Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Swept Source System Configuration
2.2. Seed Sample Preparation
2.3. Experimental Algorithm
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pickersgill, B. Genetic resources and breeding of capsicum spp. Euphytica 1997, 96, 129–133. [Google Scholar] [CrossRef]
- Sganzerla, M.; Coutinho, J.P.; de Melo, A.M.T.; Godoy, H.T. Fast method for capsaicinoids analysis from capsicum chinense fruits. Food Res. Int. 2014, 64, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, K. Biological activities of red pepper (capsicum annuum) and its pungent principle capsaicin: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Hamim, I.; Ali, M.; Ashrafuzzaman, M. Effect of seed treatment on seedling health of chili. J. Environ. Sci. Nat. Resour. 2015, 7, 177–181. [Google Scholar] [CrossRef]
- Taylor, A.; Harman, G. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990, 28, 321–339. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, U.; Sharma, P.; Kumar, A.; Sharma, L. Seed treatments for sustainable agriculture—A review. J. Appl. Nat. Sci. 2015, 7, 521–539. [Google Scholar] [CrossRef]
- Robani, H. Film-coating of horticultural seed. HortTechnology 1994, 4, 104–105. [Google Scholar]
- Hazra, D.; Patanjali, P. Seed coating formulation technologies: An environmental biology friendly approaches for sustainable agriculture. Biosci. Methods 2016, 7. [Google Scholar] [CrossRef]
- Payne, R.; Morris, L. Differentiation of soybean cultivars by seedling pigmentation patterns. J. Seed Technol. 1976, 1, 1–9. [Google Scholar]
- Prabhu, K.; Teli, M. Eco-dyeing using tamarindus indica l. Seed coat tannin as a natural mordant for textiles with antibacterial activity. J. Saudi Chem. Soc. 2014, 18, 864–872. [Google Scholar] [CrossRef]
- Goldthwait, C.F.; Smith, H.O.; Roberts, F.T. Special dyeing of cotton on the seed gives visual evidence of changes during fiber development. Text. Res. J. 1950, 20, 100–104. [Google Scholar] [CrossRef]
- Basavaraj, G.; Kurdikeri, M. Effect of seed colouring on seed storability in soybean. Seed Res. 2000, 28, 39–41. [Google Scholar]
- Dowell, F.E.; Boratynski, T.N.; Ykema, R.E.; Dowdy, A.K.; Staten, R.T. Use of optical sorting to detect wheat kernels infected with tilletia indica. Plant Dis. 2002, 86, 1011–1013. [Google Scholar] [CrossRef]
- Ogunniyi, D. Castor oil: A vital industrial raw material. Bioresour. Technol. 2006, 97, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Shearer, S.; Payne, F. Color and defect sorting of bell peppers using machine vision. Trans. ASAE 1990, 33, 1245–1250. [Google Scholar] [CrossRef]
- Gomes, J.F.S.; Leta, F.R. Applications of computer vision techniques in the agriculture and food industry: A review. Eur. Food Res. Technol. 2012, 235, 989–1000. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Park, K.; Lee, S.-Y.; Jung, H.-Y.; Jeon, M.; Kim, J. In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. J. Spectrosc. 2016, 2016. [Google Scholar] [CrossRef]
- Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Kim, J.; Jung, H.-Y.; Jeon, M.; Lee, S.-Y. In vivo non-destructive monitoring of capsicum annuum seed growth with diverse nacl concentrations using optical detection technique. Sensors 2017, 17, 2887. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lee, C.; Kim, J.; Jung, H.-Y. Application of optical coherence tomography to detect cucumber green mottle mosaic virus (cgmmv) infected cucumber seed. Hortic. Environ. Biotechnol. 2012, 53, 428–433. [Google Scholar] [CrossRef]
- Wijesinghe, R.E.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Optical sensing method to analyze germination rate of capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J. Biomed. Opt. 2017, 22, 091502. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.; Kim, J.; Jung, U.; Lee, C.; Jung, W.; Boppart, S.A. Full-range k-domain linearization in spectral-domain optical coherence tomography. Appl. Opt. 2011, 50, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Adhi, M.; Duker, J.S. Optical coherence tomography–current and future applications. Curr. Opin. Ophthalmol. 2013, 24, 213. [Google Scholar] [CrossRef] [PubMed]
- Shimada, Y.; Sadr, A.; Sumi, Y.; Tagami, J. Application of optical coherence tomography (oct) for diagnosis of caries, cracks, and defects of restorations. Curr. Oral Health Rep. 2015, 2, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.; Schalch, P.; Di Silvio, M.; Betancourt, M.A.; Wong, B.J. Optical coherence tomography applications in otolaryngology. Acta Otorrinolaringol. 2009, 60, 357–363. [Google Scholar] [CrossRef]
- Zysk, A.M.; Nguyen, F.T.; Oldenburg, A.L.; Marks, D.L.; Boppart, S.A. Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 2007, 12. [Google Scholar] [CrossRef] [PubMed]
- Izatt, J.A.; Kulkarni, M.D.; Wang, H.-W.; Kobayashi, K.; Sivak, M.V. Optical coherence tomography and microscopy in gastrointestinal tissues. IEEE J. Sel. Top. Quant. Electron. 1996, 2, 1017–1028. [Google Scholar] [CrossRef]
- Welzel, J.; Lankenau, E.; Birngruber, R.; Engelhardt, R. Optical coherence tomography of the human skin. J. Am. Acad. Dermatol. 1997, 37, 958–963. [Google Scholar] [CrossRef]
- Gambichler, T.; Jaedicke, V.; Terras, S. Optical coherence tomography in dermatology: Technical and clinical aspects. Arch. Dermatol. Res. 2011, 303, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Kirillin, M.; Chang, E.W.; Sergeeva, E.; Yun, S.H.; Mattsson, L. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics. Opt. Express 2014, 22, 15804–15819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prykäri, T.; Czajkowski, J.; Alarousu, E.; Myllylä, R. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Opt. Rev. 2010, 17, 218–222. [Google Scholar] [CrossRef]
- Wiesauer, K.; Pircher, M.; Götzinger, E.; Bauer, S.; Engelke, R.; Ahrens, G.; Grützner, G.; Hitzenberger, C.K.; Stifter, D. En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Opt. Express 2005, 13, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Shen, Y.-C.; Ho, L.; May, R.K.; Zeitler, J.A.; Evans, M.; Taday, P.F.; Pepper, M.; Rades, T.; Gordon, K.C. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Opt. Lasers Eng. 2011, 49, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy. Neoplasia 2000, 2, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Meglinski, I.; Buranachai, C.; Terry, L. Plant photonics: Application of optical coherence tomography to monitor defects and rots in onion. Laser Phys. Lett. 2010, 7, 307. [Google Scholar] [CrossRef]
- Srimal, L.K.T. Development of Functional Optical Coherence Tomography (FOCT) for Monitoring Environmental Effects on Plants. Ph.D. Thesis, Saitama University, Saitama, Japan, March 2015. [Google Scholar]
- Sapozhnikova, V.; Kamenskii, V.; Kuranov, R. Visualization of plant tissues by optical coherence tomography. Russ. J. Plant Physiol. 2003, 50, 282–286. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S.-Y.; Kim, J.-Y.; Jung, H.-Y.; Kim, J. Optical sensing method for screening disease in melon seeds by using optical coherence tomography. Sensors 2011, 11, 9467–9477. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.E.; Lee, S.-Y.; Ravichandran, N.K.; Shirazi, M.F.; Moon, B.; Jung, H.-Y.; Jeon, M.; Kim, J. Bio-photonic detection method for morphological analysis of anthracnose disease and physiological disorders of diospyros kaki. Opt. Rev. 2017, 24, 199–205. [Google Scholar] [CrossRef]
- Rollins, A.M.; Izatt, J.A. Optimal interferometer designs for optical coherence tomography. Opt. Lett. 1999, 24, 1484–1486. [Google Scholar] [CrossRef] [PubMed]
Normalized Intensity Observed at Different Depths (a.u.) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Seed Varieties (10 Seed Samples in Each Group) | Depth (µm) | |||||||||
100 (µm) | 200 (µm) | 300 (µm) | 400 (µm) | 500 (µm) | ||||||
Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | Average | Standard Deviation | |
C. annum (control) | 0.485 | 0.028 | 0.326 | 0.021 | 0.243 | 0.036 | 0.186 | 0.016 | 0.157 | 0.017 |
C. annuum cv. PR Ppareum | 0.698 | 0.016 | 0.536 | 0.011 | 0.438 | 0.011 | 0.367 | 0.008 | 0.321 | 0.012 |
C. annuum cv. PR Yeol | 0.670 | 0.023 | 0.505 | 0.029 | 0.418 | 0.031 | 0.347 | 0.027 | 0.290 | 0.033 |
C. annuum cv. Asia Jeombo | 0.631 | 0.029 | 0.475 | 0.027 | 0.384 | 0.035 | 0.311 | 0.034 | 0.256 | 0.032 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manattayil, J.K.; Ravichandran, N.K.; Wijesinghe, R.E.; Shirazi, M.F.; Lee, S.-Y.; Kim, P.; Jung, H.-Y.; Jeon, M.; Kim, J. Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection. Sensors 2018, 18, 2500. https://doi.org/10.3390/s18082500
Manattayil JK, Ravichandran NK, Wijesinghe RE, Shirazi MF, Lee S-Y, Kim P, Jung H-Y, Jeon M, Kim J. Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection. Sensors. 2018; 18(8):2500. https://doi.org/10.3390/s18082500
Chicago/Turabian StyleManattayil, Jyothsna Konkada, Naresh Kumar Ravichandran, Ruchire Eranga Wijesinghe, Muhammad Faizan Shirazi, Seung-Yeol Lee, Pilun Kim, Hee-Young Jung, Mansik Jeon, and Jeehyun Kim. 2018. "Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection" Sensors 18, no. 8: 2500. https://doi.org/10.3390/s18082500
APA StyleManattayil, J. K., Ravichandran, N. K., Wijesinghe, R. E., Shirazi, M. F., Lee, S. -Y., Kim, P., Jung, H. -Y., Jeon, M., & Kim, J. (2018). Non-Destructive Classification of Diversely Stained Capsicum annuum Seed Specimens of Different Cultivars Using Near-Infrared Imaging Based Optical Intensity Detection. Sensors, 18(8), 2500. https://doi.org/10.3390/s18082500