Preferred Placement and Usability of a Smart Textile System vs. Inertial Measurement Units for Activity Monitoring
Abstract
:1. Introduction
1.1. Microelectromechanical Systems (MEMS)
1.2. Smart Textile Systems (STSs)
1.3. Usability Perspective
2. Materials and Methods
2.1. Participants and Experimental Procedures
2.2. Wearable Systems
2.2.1. Smart Textile Systems
2.2.2. Inertial Measurement Unit System
2.3. Assessing Usability
- (1)
- Is it comfortable?
- (2)
- Is it small enough?
- (3)
- Is it lightweight?
- (4)
- Is it safe?
- (5)
- Is it simple to use?
- (6)
- Is it fashionable?
- (7)
- Does it motivate me to use it?
- (8)
- Will it disturb my privacy?
- (9)
- Does it interfere with the appearance of a garment?
- (10)
- Is it visible to others?
- (11)
- Can I wear different types of clothing with the device?
- (12)
- Is it suitable for continuous monitoring 24/7?
- (13)
- Will it remain in place or accidentally detach?
- (14)
- Will it interfere with normal activities of daily life?
2.4. Statistical Analysis
3. Results
3.1. Preferred Placement and Garment
3.2. Usability Questions
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Rossi, D.; Veltink, P. Wearable technology for biomechanics: E-textile or micromechanical sensors? IEEE Eng. Med. Biol. Mag. 2010, 29, 37–43. [Google Scholar] [PubMed]
- Wong, W.Y.; Wong, M.S.; Lo, K.H. Clinical applications of sensors for human posture and movement analysis: A review. Prosthet. Orthot. Int. 2007, 31, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Strath, S.J.; Kaminsky, L.A.; Ainsworth, B.E.; Ekelund, U.; Freedson, P.S.; Gary, R.A.; Richardson, C.R.; Smith, D.T.; Swartz, A.M. Guide to the assessment of physical activity: Clinical and research applications: A scientific statement from the American heart association. Circulation 2013, 128, 2259–2279. [Google Scholar] [CrossRef] [PubMed]
- Schrack, J.A.; Cooper, R.; Koster, A.; Shiroma, E.J.; Murabito, J.M.; Rejeski, W.J.; Ferrucci, L.; Harris, T.B. Assessing daily physical activity in older adults: Unraveling the complexity of monitors, measures, and methods. J. Gerontol. Biol. Sci. Med. Sci. 2016, 71, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, T.J.M.; Dontje, M.L.; Sprenger, S.R.; Krijnen, W.P.; van der Schans, C.P.; de Groot, M. Reliability and validity of ten consumer activity trackers. BMC Sports Sci. Med. Rehabil. 2015, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Luinge, H.J.; Veltink, P.H. Inclination measurement of human movement using a 3-D accelerometer with autocalibration. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 112–121. [Google Scholar] [CrossRef] [PubMed]
- An, H.S.; Kim, Y.; Lee, J.M. Accuracy of inclinometer functions of the activPAL and actiGraph Gt3x+: A focus on physical activity. Gait Posture 2017, 51, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Lyden, K.; Keadle, S.K.; Staudenmayer, J.; Freedson, P.S. A method to estimate free-living active and sedentary behavior from an accelerometer. Med. Sci. Sport. Exerc. 2014, 46, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.; Cahalin, L.; Buman, M.; Ross, R. The current state of physical activity assessment tools. Prog. Cardiovasc. Dis. 2015, 57, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Cleland, I.; Kikhia, B.; Nugent, C.; Boytsov, A.; Hallberg, J.; Synnes, K.; McClean, S.; Finlay, D. Optimal placement of accelerometers for the detection of everyday activities. Sensors 2013, 13, 9183–9200. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luinge, H.J.; Veltink, P.H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Rehabil. Eng. Comput. 2005, 43, 273–282. [Google Scholar] [CrossRef]
- Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Xsens Tech. 2013, 3, 1–9. [Google Scholar]
- Roetenberg, D.; Luinge, H.J.; Baten, C.T.; Veltink, P.H. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, E.R.; McGhee, R.B.; Yun, X.; Zyda, M.J. Inertial and magnetic posture tracking for inserting humans into networked virtual environments. In Proceedings of the ACM symposium on Virtual Reality Software and Technology, Baniff, AB, Canada, 15–17 November 2001; pp. 9–16. [Google Scholar]
- Foxlin, E. Inertial Head-Tracker Sensor Fusion by a Complementary Separate-Bias Kalman Filte. In Proceedings of the IEEE Virtual Reality Annual International Symposium, Santa Clara, CA, USA, 30 March–3 April 1996; pp. 185–194. [Google Scholar]
- Akbari, A.; Thomas, X.; Jafari, R. Automatic noise estimation and context-enhanced data fusion of IMU and Kinect for human motion measurement. In Proceedings of the IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Eindhoven, The Netherlands, 9–12 May 2017; pp. 178–182. [Google Scholar]
- Shepherd, J.B.; Thiel, D.V.; Espinosa, H.G. Evaluating the use of inertial-magnetic sensors to assess fatigue in boxing during intensive training. IEEE Sens. Lett. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Comput. Hum. Behav. 1999, 15, 571–583. [Google Scholar] [CrossRef]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Sabatini, A.M.; Martelloni, C.; Scapellato, S.; Cavallo, F. Assessment of walking features from foot inertial sensing. IEEE Trans. Biomed. Eng. 2005, 52, 486–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finley, M.A.; Lee, R.Y. Effect of sitting posture on 3-dimensional scapular kinematics measured by skin-mounted electromagnetic tracking sensors. Arch. Phys. Med. Rehabil. 2003, 84, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, R.; Eberhardt, S.P.; Rahman, T.; Sample, W.; Seliktar, R.; Alexander, M. Analysis of arm trajectories of everyday tasks for the development of an upper-limb orthosis. IEEE Trans. Rehabil. Eng. 2000, 8, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour, M.I.; Zobeiri, O.; Akbari, A.; Milani, Y.; Narimani, R.; Moshiri, B.; Parnianpour, M. Sharif-human movement instrumentation system (SHARIF-HMIS) for daily activities. In Proceedings of the 19th Iranian Conference of Biomedical Engineering (ICBME), Tehran, Iran, 20–21 December 2012; pp. 143–148. [Google Scholar]
- English, C.; Healy, G.N.; Coates, A.; Lewis, L.; Olds, T.; Bernhardt, J. Sitting and activity time in people with stroke. Phys. Ther. 2016, 96, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Anderssen, S.A.; Van der Ploeg, H.P.; Hendriksen, I.J.M.; Donnelly, A.E.; Brage, S.; Ekelund, U. Are self-report measures able to define individuals as physically active or inactive? Med. Sci. Sport. Exerc. 2016, 48, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Mokhlespour Esfahani, M.I.; Alemi, M.M.; Alabdulkarim, S.; Rashedi, E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I—“Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl. Ergon. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Cherenack, K.; van Pieterson, L. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012, 112, 091301. [Google Scholar] [CrossRef]
- Coyle, S.; Wu, Y.; Lau, K.-T.; De Rossi, D.; Wallace, G.; Diamond, D. Smart nanotextiles: A review of materials and applications. MRS Bull. 2011, 32, 434–442. [Google Scholar] [CrossRef]
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Fleury, A.; Sugar, M.; Chau, T. E-textiles in clinical rehabilitation: A scoping review. Electronics 2015, 4, 173–203. [Google Scholar] [CrossRef]
- Castano, L.M.; Flatau, A.B. Smart textile transducers: Design, techniques, and applications. In Industrial Applications for Intelligent Polymers and Coatings; Springer International Publishing: Cham, Switzerland, 2016; pp. 121–146. [Google Scholar]
- Szelitzky, E.; Kuklyte, J.; Mândru, D.; O’Connor, N. Low cost angular displacement sensors for biomechanical applications—A review. J. Biomed. Eng. Technol. 2014, 2, 21–28. [Google Scholar]
- Farooq, M.; Sazonov, E. Strain sensors in wearable devices. In Wearable Electronics Sensors; Springer International Publishing: New York, NY, USA, 2015; pp. 231–239. [Google Scholar]
- Saggio, G.; Riillo, F.; Sbernini, L.; Quitadamo, L.R. Resistive flex sensors: A survey. Smart Mater. Struct. 2016, 25, 013001. [Google Scholar] [CrossRef]
- Bedeloglu, A.C.; Koeppe, R.; Demir, A.; Bozkurt, Y.; Sariciftci, N.S. Development of energy generating photovoltaic textile structures for smart applications. Fibers Polym. 2010, 11, 378–383. [Google Scholar] [CrossRef]
- Lee, M.R.; Eckert, R.D.; Forberich, K.; Dennler, G.; Brabec, C.J.; Gaudiana, R.A. Solar power wires based on organic photovoltaic materials. Science 2009, 324, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Liu, J. Human power-based energy harvesting strategies for mobile electronic devices. Front. Energy Power Eng. China 2009, 3, 27–46. [Google Scholar] [CrossRef]
- Noury, N.; Dittmar, A.; Corroy, C.; Baghai, R.; Weber, J.L.; Blanc, D.; Klefstat, F.; Blinovska, A.; Vaysse, S.; Comet, B. Vtamn—A smart clothe for ambulatory remote monitoring of physiological parameters and activity. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 3266–3269. [Google Scholar]
- Paradiso, R.; Loriga, G.; Taccini, N. A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Axisa, F.; Schmitt, P.M.; Gehin, C.; Delhomme, G.; McAdams, E.; Dittmar, A. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, M.; Caldani, L.; Paradiso, R. Textile piezoresistive sensors for biomechanical variables monitoring. In Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 5358–5361. [Google Scholar]
- Chan, M.; Esteve, D.; Fourniols, J.Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Langereis, G.; de Voogd-Claessen, L.; Spaepen, A.; Siplia, A.; Rotsch, C.; Linz, T. Context: Contactless sensors for body monitoring incorporated in textiles. In Proceedings of the IEEE International Conference on Portable Information Devices, Orlando, FL, USA, 25–29 May 2007; pp. 1–5. [Google Scholar]
- Grillet, A.; Kinet, D.; Witt, J.; Schukar, M.; Krebber, K.; Pirotte, F.; Depre, A. Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sens. J. 2008, 8, 1215–1222. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Magenes, G.; Curone, D.; Caldani, L.; Secco, E.L. Fire fighters and rescuers monitoring through wearable sensors: The ProeTEX project. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3594–3597. [Google Scholar]
- Hill, K.; Dolmage, T.E.; Woon, L.; Goldstein, R.; Brooks, D. Measurement properties of the sensewear armband in adults with chronic obstructive pulmonary disease. Thorax 2010, 65, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Texisense Smart Sock. Available online: http://www.Texisense.Com/ (accessed on 24 July 2018).
- Esposito, M.; Macagno, M.; Vigano, D.G. Sensors, Interfaces and Sensor Systems for Data Collection and Integrated Remote Monitoring of Conditions at or Near Body Surfaces. U.S. Patent 8,925,392, 6 January 2015. [Google Scholar]
- Textile Sensoric Alphafit- Smart Sock and Alphamat. Available online: http://www.Alpha-fit.De/en/products/smartsock.Html (accessed on 24 July 2018).
- Mokhlespour Esfahani, M.I.; Taghinedjad, S.; Mottaghitalab, V.; Narimani, R.; Parnianpour, M. Novel printed body worn sensor for measuring the human movement orientation. Sens. Rev. 2016, 36, 321–331. [Google Scholar] [CrossRef]
- Lorussi, F.; Carbonaro, N.; De Rossi, D.; Paradiso, R.; Veltink, P.; Tognetti, A. Wearable textile platform for assessing stroke patient treatment in daily life conditions. Front. Bioeng. Biotechnol. 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Mokhlespour Esfahani, M.I.; Zobeiri, O.; Moshiri, B.; Narimani, R.; Mehravar, M.; Rashedi, E.; Parnianpour, M. Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach. Sensors 2017, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.; Park, S.; Park, J.-J.; Bae, J. A knitted glove sensing system with compression strain for finger movements. Smart Mater. Struct. 2018, 27, 055016. [Google Scholar] [CrossRef] [Green Version]
- Mokhlespour Esfahani, M.I.; Nussbaum, M.A. A “smart” undershirt for tracking upper body motions: Task classification and angle prediction. IEEE Sensors J. 2018, in press. [Google Scholar]
- Rupp, M.A.; Michaelis, J.R.; McConnell, D.S.; Smither, J.A. The role of individual differences on perceptions of wearable fitness device trust, usability, and motivational impact. Appl. Ergon. 2018, 70, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.H.; McGregor, A.H. Body-worn sensor design: What do patients and clinicians want? Ann. Biomed. Eng. 2011, 39, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.H.; Chandaria, V.; McGregor, A. Wearable and implantable sensors: The patient’s perspective. Sensors 2012, 12, 16695–16709. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.-S.; Hong, J.-Y.; Cho, H.-S.; Han, K.-H.; Lee, J.-H. An investigation of usability evaluation for smart clothing. Interact. Platforms Tech. 2007, 4551, 1053–1060. [Google Scholar]
- Abbate, S.; Avvenuti, M.; Light, J. Usability study of a wireless monitoring system among Alzheimer’s disease elderly population. Int. J. Telemed. Appl. 2014, 2014, 617495. [Google Scholar] [CrossRef] [PubMed]
- Schall, M.C., Jr.; Sesek, R.F.; Cavuoto, L.A. Barriers to the adoption of wearable sensors in the workplace: A survey of occupational safety and health professionals. Hum. Factors 2018, 60, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Beeler, N.; Roos, L.; Delves, S.K.; Veenstra, B.J.; Friedl, K.; Buller, M.J.; Wyss, T. The wearing comfort and acceptability of ambulatory physical activity monitoring devices in soldiers. IISE Trans. Occup. Ergon. Hum. Factors 2018, 6, 1–10. [Google Scholar] [CrossRef]
- Claudio, D.; Velázquez, M.A.; Bravo-Llerena, W.; Okudan, G.E.; Freivalds, A. Perceived usefulness and ease of use of wearable sensor-based systems in emergency departments. IIE Trans. Occup. Ergon. Hum. Factors 2015, 3, 177–187. [Google Scholar] [CrossRef]
- Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 2010, 15, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.E.; Hagströmer, M.; Pober, D.M.; Bowles, H.R. Best practices for using physical activity monitors in population-based research. Med. Sci. Sport. Exerc. 2012, 44, S68–S76. [Google Scholar] [CrossRef] [PubMed]
- Boerema, S.T.; van Velsen, L.; Schaake, L.; Tonis, T.M.; Hermens, H.J. Optimal sensor placement for measuring physical activity with a 3D accelerometer. Sensors 2014, 14, 3188–3206. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schall, M.C., Jr.; Fethke, N.B.; Chen, H. Evaluation of four sensor locations for physical activity assessment. Appl. Ergon. 2016, 53, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Buenaflor, C.; Kim, H.-C. Six human factors to acceptability of wearable computers. Int. J. Multimedia Ubiquitous Eng. 2013, 8, 103–114. [Google Scholar]
- Hildebrandt, J.; Brauner, P.; Ziefle, M. Smart textiles as intuitive and ubiquitous user interfaces for smart homes. In Human Aspects of It for the Aged Population. Design for Everyday Life; Zhou, J., Salvendy, G., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 423–434. [Google Scholar]
- Zheng, Y.L.; Ding, X.R.; Poon, C.C.Y.; Lo, B.P.L.; Zhang, H.; Zhou, X.L.; Yang, G.Z.; Zhao, N.; Zhang, Y.T. Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 2014, 61, 1538–1554. [Google Scholar] [CrossRef] [PubMed]
- Chortos, A.; Bao, Z. Skin-inspired electronic devices. Mater. Today 2014, 17, 321–331. [Google Scholar] [CrossRef]
- Kim, D.-H.; Lu, N.; Ma, R.; Kim, Y.-S.; Kim, R.-H.; Wang, S.; Wu, J.; Won, S.M.; Tao, H.; Islam, A. Epidermal electronics. Science 2011, 333, 838–843. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Jia, W.; Wang, J. Tattoo-based wearable electrochemical devices: A review. Electroanalysis 2015, 27, 562–572. [Google Scholar] [CrossRef]
- Dalsgaard, C.; Sterrett, R. White Paper on Smart Textile Garments and Devices: A Market Overview of Smart Textile Wearable Technologies. Available online: https://www.innovationintextiles.com/uploads/2772/Ohmatex%20Whitepaper_2014final%20(2).pdf (accessed on 24 July 2018).
Types of Wearable Sensor by MEMS | Studies | Commercial Devices |
---|---|---|
Accelerometer | Foerster, et al. [19] | ActivPAL (PAL Technologies Ltd, Glasgow, Scotland, UK), ActiGraph (ActiGraph, Pensacola, FL, USA), Actical (Philip, Andover, MA, USA), GENEActive (Activinsights, Kimbolton, Cambridgeshire, UK), Omron (OMRON, Healthcare Europe B.V., Hoofddorp, The Netherlands), StepWatch (Orthocare Innovations, WA, USA) |
Gyroscope | Aminian, et al. [20] Sabatini, et al. [21] | InterSense (InterSense Billerica, MA, USA), Sparkfun (SparkFun Electronics, Boulder, CO, USA) |
Magnetic sensor | Finley and Lee [22] Ramanathan, et al. [23] | InterSense |
Inertial sensor | Luinge [12] | Xsens |
Inertial Measurement Unit | Roetenberg, et al. [13] Mokhlespour, et al. [24] | Xsens, Biosyn System, APDM (APDM, Inc., Portland, OR, USA) |
Multi-sensing devices | English, et al. [25] Steene-Johannessen, et al. [26] | SenseWear (BodyMedia Inc., Pittsburgh, PA, USA) and Actiheart (CamNtech, Cambridge, United Kingdom) |
Project/Products | Description | Year | Ref. |
---|---|---|---|
VTAMN | Smart shirt to monitor physiological parameters | 2004 | [40] |
WEALTHY | Smart garment to monitor vital signs (i.e., respiration, and electrocardiogram) and human activity | 2005 | [41] |
MARSIAN | Smart glove to measure temperature | 2005 | [42] |
MyHeart | Two smart garments to monitor activities and respiration | 2007 | [43] |
BIOTEX | Device to monitor physiological factors and body fluids | 2008 | [44] |
ConText | Vest to monitor muscle activity continuously | 2008 | [45] |
OFSETH | Device to monitor chest movements during respiration | 2009 | [46] |
Sensatex | Smart shirt to monitor vital signs (i.e., heart and respiration rates) and movement | 2009 | [47] |
ProeTEX | Smart garment for emergency workers to measure vital health parameters, such as heart rates, respiration rates, and postures | 2010 | [48] |
SenseWear Body Armband (SAB) | Device to measure energy expenditure | 2010 | [49] |
Texisense | Smart sock to measure foot pressure | 2015 | [50] |
Sensoria | Smart sock to measure foot pressure | 2015 | [51] |
Alpha-Fit | Smart sock to measure foot pressure | 2015 | [52] |
Body Worn Sensor | Smart textile sensor developed by electroactive polymers | 2016 | [53] |
INTERACTION | Shirt and trousers for monitoring activities of daily living | 2016 | [54] |
Trunk Motion system (TMS) | Smart shirt to measure 3D angles of trunk movement | 2017 | [55] |
Knitted Glove Sensing System | Smart glove to capture finger movements using compression strain | 2018 | [56] |
Smart Undershirt (SUS) | Smart undershirt for task classification and angle prediction of upper body motion | 2018 | [57] |
Item | Mean | Std. Dev. | Range |
---|---|---|---|
Age (years) | 21.9 | 3.3 | 18–30 |
Body Mass (kg) | 76.5 | 7.6 | 64.4–86 |
Stature (cm) | 173 | 6.5 | 165–186 |
BMI (kg/m2) | 25.9 | 2.6 | 22.5–29.8 |
IMU | % | STS | % |
---|---|---|---|
Anywhere on my body | 5.6 | Any garment on my body | 44.4 |
Anywhere on my upper body | 0 | Any garment on my upper body | 11.1 |
Anywhere on my lower body | 5.6 | Any garment on my lower body | 16.7 |
Head | 38.9 | Hat | 33.3 |
Neck | 0 | Headband | 38.9 |
Shoulders | 27.8 | Neckband | 22.2 |
Torso/Abdomen | 11.1 | Sleeveless T-shirt | 44.4 |
Back | 33.3 | Short-sleeved T-Shirt | 61.1 |
Chest | 27.8 | Long-sleeve T-shirt | 38.9 |
Waist | 44.4 | Elbow sleeve | 27.8 |
Upper Arms | 27.8 | Wristband | 55.6 |
Lower Arms (Forearm) | 27.8 | Glove | 27.8 |
Elbow | 5.6 | Finger band | 33.3 |
Wrist | 55.6 | Underwear | 33.3 |
Hand | 27.8 | Shorts | 38.9 |
Finger (s) | 0 | Trousers/pants | 33.3 |
Hip | 22.2 | Thigh sleeve | 33.3 |
Thigh | 44.4 | Knee sleeve | 38.9 |
Knee | 33.3 | Ankle sleeve | 44.4 |
Shank (lower leg) | 50 | Socks | 55.6 |
Ankle | 66.7 | ||
Foot | 44.4 |
Questions | 1 Strongly Disagree (%) | 2 (%) | 3 (%) | 4 (%) | 5 Strongly Agree (%) | |
---|---|---|---|---|---|---|
1 | Is comfortable | 0 | 6 | 6 | 33 | 55 |
2 | Is small | 0 | 6 | 16 | 39 | 39 |
3 | Is light | 0 | 0 | 0 | 28 | 72 |
4 | Is safe | 0 | 6 | 16 | 22 | 56 |
5 | Is simple to use | 0 | 0 | 17 | 39 | 44 |
6 | Is fashionable | 6 | 6 | 21 | 61 | 6 |
7 | Motivates me to use it | 0 | 6 | 28 | 44 | 22 |
8 | Does not disturb my privacy | 6 | 0 | 22 | 39 | 33 |
9 | Alters the appearance of a garment | 17 | 33 | 28 | 22 | 0 |
10 | Is visible to others | 6 | 38 | 44 | 6 | 6 |
11 | Blends in with different types of clothing that might be worn with the device | 0 | 0 | 6 | 50 | 44 |
12 | Is suitable for continuous monitoring 24/7 | 0 | 6 | 22 | 28 | 44 |
13 | Does not detach from a user unless needed | 0 | 0 | 6 | 16 | 78 |
14 | Does not affect normal activities of daily life | 0 | 6 | 11 | 11 | 72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokhlespour Esfahani, M.I.; Nussbaum, M.A. Preferred Placement and Usability of a Smart Textile System vs. Inertial Measurement Units for Activity Monitoring. Sensors 2018, 18, 2501. https://doi.org/10.3390/s18082501
Mokhlespour Esfahani MI, Nussbaum MA. Preferred Placement and Usability of a Smart Textile System vs. Inertial Measurement Units for Activity Monitoring. Sensors. 2018; 18(8):2501. https://doi.org/10.3390/s18082501
Chicago/Turabian StyleMokhlespour Esfahani, Mohammad Iman, and Maury A. Nussbaum. 2018. "Preferred Placement and Usability of a Smart Textile System vs. Inertial Measurement Units for Activity Monitoring" Sensors 18, no. 8: 2501. https://doi.org/10.3390/s18082501
APA StyleMokhlespour Esfahani, M. I., & Nussbaum, M. A. (2018). Preferred Placement and Usability of a Smart Textile System vs. Inertial Measurement Units for Activity Monitoring. Sensors, 18(8), 2501. https://doi.org/10.3390/s18082501