Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children
Abstract
:1. Introduction
2. Background
2.1. Psychomotor Limitations in Hearing Impaired Children
2.1.1. Fundamental Motor Skills
2.1.2. Perceptual Motor Skills
3. Methods
3.1. Search Strategy
3.2. Quality
3.3. Systems to Train Psychomotor Skills
3.3.1. Fundamental Motor Skills
3.3.2. Perceptual Motor Skills
3.3.3. Summary of Works
4. Results
4.1. Computer Vision
4.2. Interactive Floors
4.3. Touch Screens
4.4. Mouse and Keyboard
4.5. Tangible Artifacts
4.6. Multimodal Systems
4.7. VR Devices
5. Discussion
5.1. Computer Vision
5.2. Interactive Floors
5.3. Touch Screens
5.4. Mouse and Keyboard
5.5. Tangible Artifacts
5.6. Multimodal Systems
5.7. VR Devices
5.8. Limitations
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- National Deaf Children’s Society. Supporting the Achievement of Hearing Impaired Children in Early Years Settings. Appendix I: Types and Levels of Deafness. 2015. Available online: www.ndcs.org.uk (accessed on 2 August 2018).
- Gheysen, F.; Loots, G.; Van waelvelde, H. Motor development of deaf children with and without cochlear implants. J. Deaf Stud. Deaf Educ. 2008, 13, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.D.S.; Lemos, A.; Macky, C.F.; Ferraz, K.M. Postural control assessment in students with normal hearing and sensorineural hearing loss. Braz. J. Otorhinolaryngol. 2015, 81, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, V.; Roy, F.G. An overview of motor skill performance and balance in hearing impaired children. Ital. J. Pediatr. 2011, 37, 33. [Google Scholar] [CrossRef] [PubMed]
- Wiegersma, P.H.; Vander, V.A. Motor Development of Deaf Children. J. Child Psychol. Psychiatry 1983, 24, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Musselman, K.E.; Shah, M.; Zariffa, J. Rehabilitation technologies and interventions for individuals with spinal cord injury: Translational potential of current trends. J. Neuroeng. Rehabil. 2018, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Gaebler-Spira, D.; Peri, E.; Lunardini, F.; Sanchez-Santed, F.; Duff, M. Rehabilitation technologies for cerebral palsy. In Biosystems and Biorobotics; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 87–108. [Google Scholar]
- Fellinger, M.J.; Holzinger, D.; Aigner, M.; Beitel, C.; Fellinger, J. Motor performance and correlates of mental health in children who are deaf or hard of hearing. Dev. Med. Child Neurol. 2015, 57, 942–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masuda, T.; Kaga, K. Relationship between acquisition of motor function and vestibular function in children with bilateral severe hearing loss. Acta Otolaryngol. 2014, 134, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Engel-Yeger, B.; Weissman, D. A comparison of motor abilities and perceived self-efficacy between children with hearing impairments and normal hearing children. Disabil. Rehabil. 2009, 31, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Leigh, G.; Ching, T.Y.C.; Crowe, K.; Cupples, L.; Marnane, V.; Seeto, M. Factors affecting psychosocial and motor development in 3-year-old children who are deaf or hard of hearing. J. Deaf Stud. Deaf Educ. 2015, 20, 331–342. [Google Scholar] [CrossRef] [PubMed]
- De Kegel, A.; Maes, L.; Van Waelvelde, H.; Dhooge, I. Examining the impact of cochlear implantation on the early gross motor development of children with a hearing loss. Ear Hear 2015, 36, e113. [Google Scholar] [CrossRef] [PubMed]
- Jafarnezhadgero, A.A.; Shad, M.M.; Majlesi, M.; Granacher, U. A comparison of running kinetics in children with and without genu varus: A cross sectional study. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Melo, R.S.; Marinho, S.E.; Freire, M.E.A.; Souza, R.A.; Damasceno, H.A.M.; Raposo, M.C.F. Static and dynamic balance of children and adolescents with sensorineural hearing loss. Einstein 2017, 15, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greters, M.E.; Bittar, R.S.M.; Grasel, S.S.; Oiticica, J.; Bento, R.F. Desempenho auditivo como preditor de recuperação postural em usuários de implante coclear. Braz. J. Otorhinolaryngol. 2017, 83, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.S.; Shayman, C.S.; Hullar, T.E. The Effect of Hearing Aids and Cochlear Implants on Balance during Gait. Otol. Neurotol. 2017, 38, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Houde, M.S.; Landry, S.P.; Page, S.; Maheu, M.; Champoux, F. Body Perception and Action Following Deafness. Neural Plast. 2016. [CrossRef] [PubMed]
- Melo, R.S. Gait performance of children and adolescents with sensorineural hearing loss. Gait Posture 2017, 57, 109–114. [Google Scholar] [CrossRef] [PubMed]
- An, M.H.; Yi, C.H.; Jeon, H.S.; Park, S.Y. Age-related changes of single-limb standing balance in children with and without deafness. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1539–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walowska, J.; Bolach, B.; Bolach, E. The influence of Pilates exercises on body balance in the standing position of hearing impaired people. Disabil. Rehabil. 2017, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maes, L.; De Kegel, A.; Van Waelvelde, H.; Dhooge, I. Association Between Vestibular Function and Motor Performance in Hearing-impaired Children. Otol. Neurotol. 2014, 35, e343–e347. [Google Scholar] [CrossRef] [PubMed]
- Vitkovic, J.; Le, C.; Lee, S.L.; Clark, R.A. The contribution of hearing and hearing loss to balance control. Audiol. Neurotol. 2016, 21, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Marnik, J.; Samolej, S.; Kapu, T.; Oszust, M.; Wysocki, M. Using Computer Graphics, Vision and Gesture Recognition Tools for Building Interactive Systems Supporting Therapy of Children. Hum. Comput. Syst. Interact. Backgrounds Appl. 2012, 2, 539–553. [Google Scholar]
- Oyewumi, M.; Wolter, N.E.; Heon, E.; Gordon, K.A.; Papsin, B.C.; Cushing, S.L. Using Balance Function to Screen for Vestibular Impairment in Children with Sensorineural Hearing Loss and Cochlear Implants. Otol. Neurotol. 2016, 37, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Zur, O.; Shimron, H.B.-R.; Leisman, G.; Carmeli, E. Balance versus hearing after cochlear implant in an adult. BMJ Case Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Movallali, G.; Ebrahimi, A.-A.; Jamshidi, A.A.; Haghgoo, H.A.; Rahgozar, M. Balance Performance of Deaf Children With and Without Cochlear Implants. Acta Med. Iran 2016, 54, 737–742. [Google Scholar]
- Parietti-Winkler, C.; Lion, A.; Montaut-Verient, B.; Grosjean, R.; Gauchard, G.C. Effects of unilateral cochlear implantation on balance control and sensory organization in adult patients with profound hearing loss. Biomed. Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed]
- Janky, K.; Givens, D. Vestibular, visual acuity and balance outcomes in children with cochlear implants: A preliminary report. Ear Hear 2015, 36, e364–e372. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zheng, Y.; Liang, M.; Zhao, F.; Yu, G.; Liu, Y.; Chen, Y.; Chen, G. Auditory spatial discrimination and the mismatch negativity response in hearing-impaired individuals. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wolter, N.E.; Cushing, S.L.; Madrigal, L.D.V.; James, A.L.; Campos, J.; Papsin, B.C.; Gordon, K.A. Unilateral Hearing Loss Is Associated With Impaired Balance in Children. Otol. Neurotol. 2016, 37, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Vidranski, T.; Farkaš, D. Motor Skills in Hearing Impaired Children with or without Cochlear Implant—A Systematic Review. Coll. Antropol. 2015, 39, 173–179. [Google Scholar] [PubMed]
- Wolter, N.E.; Gordon, K.A.; Papsin, B.C.; Cushing, S.L. Vestibular and Balance Impairment Contributes to Cochlear Implant Failure in Children. Otol. Neurotol. 2015, 36, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Savelsbergh, G.; Netelenbos, J.; Whiting, H. Auditory perception and the control of spatially coordinated action of deaf and hearing impaired children. J. Child Psychol. Psychiatry 1991, 32, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, B.A.; Neville, H.J.; Hillyard, S.A.; Mitchell, T.V. Auditory deprivation affects processing of motion, but not color. Cogn. Brain Res. 2002, 14, 422–434. [Google Scholar] [CrossRef]
- Lévesque, J.; Théoret, H.; Champoux, F. Reduced procedural motor learning in deaf individuals. Front. Hum. Neurosci. 2014, 8, 343. [Google Scholar] [CrossRef] [PubMed]
- Horn, D.L.; Fagan, M.K.; Dillon, C.M.; Pisoni, D.B.; Miyamoto, R.T. NIH Public Access. Sci. York 2008, 117, 2017–2025. [Google Scholar] [CrossRef]
- Conway, C.M.; Kronenberger, W.G. NIH Public Access. Medicine 2010, 18, 275–279. [Google Scholar] [CrossRef]
- Prasad, M.; Russell, M.I.; Hammond, T.A. A user centric model to design tactile codes with shapes and waveforms. In Proceedings of the IEEE Haptics Symp HAPTICS, Houston, TX, USA, 23–26 February 2014; pp. 597–602. [Google Scholar] [CrossRef]
- Pérez-Arévalo, C.; Manresa-Yee, C.; Beltrán, V.M.P. Game to develop rhythm and coordination in children with hearing impairments. In Proceedings of the XVIII International Conference on Human Computer Interaction, Cancun, Mexico, 25–27 September 2017. [Google Scholar] [CrossRef]
- Cattani, A.; Clibbens, J. Atypical lateralization of memory for location: Effects of deafness and sign language use. Brain Cogn. 2005, 58, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Tan, X.; Shen, L.; Wang, A.; Geng, S.; Chen, Q. Interaction between allocentric and egocentric reference frames in deaf and hearing populations. Neuropsychologia 2014, 54, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, Z.; Lega, C.; Cecchetto, C.; Papagno, C. Auditory deprivation affects biases of visuospatial attention as measured by line bisection. Exp. Brain Res. 2014, 232, 2767–2773. [Google Scholar] [CrossRef] [PubMed]
- Pyers, J.E.; Shusterman, A.; Senghas, A.; Spelke, E.S.; Emmorey, K. Evidence from an emerging sign language reveals that language supports spatial cognition. Proc Natl Acad Sci USA 2010, 107, 12116–12120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentner, D.; Özyürek, A.; Gürcanli, Ö.; Goldin-Meadow, S. Spatial language facilitates spatial cognition: Evidence from children who lack language input. Cognition 2013, 127, 318–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, P.; Mills, M. Memory for faces, shoes, and objects by deaf and hearing signers and hearing nonsigners. J. Psycholinguist Res. 2001, 30, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Nava, E.; Bottari, D.; Zampini, M.; Pavani, F. Visual temporal order judgment in profoundly deaf individuals. Exp. Brain Res. 2008, 192, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.C.J. The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearing-impaired people. JARO J. Assoc. Res. Otolaryngol. 2008, 9, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, S.V.; Matzke, P.L.; Daniel, L.L. Multisensory processing in children with cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2012, 76, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Colin, C.; Zuinen, T.; Bayard, C.; Leybaert, J. Phonological processing of rhyme in spoken language and location in sign language by deaf and hearing participants: A neurophysiological study. Neurophysiol. Clin. 2013, 43, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Campos, P.D.; Alvarenga, K.D.F.; Frederigue, N.B.; do Nascimento, L.T.; Sameshima, K.; Filho, O.A.C.; Bevilacqua, M.C. Temporal organization skills in cochlear implants recipients. Braz. J. Otorhinolaryngol. 2008, 74, 884–889. [Google Scholar] [CrossRef]
- Iversen, J.R.; Patel, A.D.; Nicodemus, B.; Emmorey, K. Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition 2015, 134, 232–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centre for Evidence-Based Physiotherapy PEDro 2018. Physiotherapy Evidence Database. Available online: https://www.pedro.org.au/ (accessed on 2 August 2018).
- Iversen, O.; Kortbek, K. Stepstone: An interactive floor application for hearing impaired children with a cochlear implant. In Proceedings of the 6th International Conference on Interaction Design and Children, Aalborg, Denmark, 6–8 June 2007; pp. 117–124. [Google Scholar] [CrossRef]
- Wille, D.; Eng, K.; Holper, L.; Chevrier, E.; Hauser, Y.; Kiper, D.; Pyk, P.; Schlegel, S.; Meyer-Heim, A. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment—A pilot study. Dev. Neurorehabil. 2009, 12, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Egusa, R.; Wada, K.; Namatame, M. Development of an Interactive Puppet Show System for the Hearing-Impaired People. In Proceedings of the CONTENT 2012: The Fourth International Conference on Creative Content Technologies, Nice, France, 22–27 July 2012; pp. 69–71. [Google Scholar]
- Radovanovic, V. The influence of computer games on visual-motor integration in profoundly deaf children. Br. J. Spec. Educ. 2013, 40, 182–188. [Google Scholar] [CrossRef]
- Noorhidawati, A.; Ghalebandi, S.G.; Siti Hajar, R. How Do Young Children Engage with Mobile Apps? Cognitive, Psychomotor, and Affective Perspective. Comput. Educ. 2015, 87, 385–395. [Google Scholar] [CrossRef]
- Correa, R.A.; Osorio, A. CASETO: Sistema Interactivo Basado en Sinestesia Para La Enseñanza/Aprendizaje De La Música Para Niños Con Discapacidad Auditiva Entre 7 a 11 Años. Editorial Bonaventuriana—Universidad Autonoma de Occidente. Obras colectivas en ciencias de la computación. 2017; pp. 37–52. ISBN 978-958-5415-19-5. Available online: http://bibliotecadigital.usb.edu.co/bitstream/10819/4662/1/Caseto_Sistema_Interactivo_Correa_2017.pdf (accessed on 2 August 2018).
- Zhu, F.; Sun, W.; Zhang, C.; Ricks, R. BoomChaCha. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 184–187. [Google Scholar] [CrossRef]
- Jouhtimäki, J.; Kitunen, S.; Plaisted, M.; Rainò, P. The Brave Little Troll—A Rhythmic Game for Deaf and Hard of Hearing Children. In Proceedings of the 13th International MindTrek Conference: Everyday Life in the Ubiquitous Era, Tampere, Finland, 30 September–2 October 2009. [Google Scholar] [CrossRef]
- Sogono, M.C.; Richards, D. A design template for multisensory and multimodal games to train and test children for sound localisation acuity. In Proceedings of the 9th Australas Conference Interact Entertain Matters Life Death, Melbourne, Australia, 30 September–1 October 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Aditya, V.; Dhenki, S.; Amarvaj, L.; Karale, A.; Singh, H. Saathi: Making It Easier for Children with Learning Disabilities to Understand the Concept of Time. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 56–61. [Google Scholar] [CrossRef]
- Conner, C. Correcting Exercise Form Using Body Tracking. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 3028–3034. [Google Scholar]
- Cheng, D.; Chi, P.-Y.; Kwak, T.; Hartmann, B.; Wright, P. Body-tracking camera control for demonstration videos. In Proceedings of the CHI’13 Extended Abstracts on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013. [Google Scholar] [CrossRef]
- Gonçalves, D.; Jesus, R.; Grangeiro, F.; Romão, T.; Correia, N. Tag Around: A 3D Gesture Game for Image Annotation. In Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, Yokohama Japan, 3–5 December 2008; pp. 259–262. [Google Scholar] [CrossRef]
- Grønbæk, K.; Iversen, O.; Kortbek, K. Interactive floor support for kinesthetic interaction in children learning environments. Interact 2007, 4663, 361–375. [Google Scholar] [CrossRef]
- Cano, S.; Peñeñory, V.; Collazos, C.A.; Fardoun, H.M.; Alghazzawi, D.M. Training with Phonak: Serious Game as Support in Auditory—Verbal Therapy for Children with Cochlear Implants. In Proceedings of the 3rd 2015 Workshop on ICTs for improving Patients Rehabilitation Research Techniques REHAB ’15, Lisbon, Portugal, 1–2 October 2015; pp. 22–25. [Google Scholar] [CrossRef]
- Nanayakkara, S.C.; Wyse, L.; Ong, S.H.; Taylor, E.A. Enhancing musical experience for the hearing-impaired using visual and haptic displays. Hum. Comput. Interact 2013, 28, 115–160. [Google Scholar] [CrossRef]
- Baijal, A.; Kim, J.; Branje, C.; Fels, D.I.; Russo, F. Composing vibrotactile music: A multi-sensory experience with the emoti-chair. In Proceedings of the 2012 IEEE Haptics Symposium, Vancouver, BC, Canada, 4–7 March 2012; pp. 509–515. [Google Scholar] [CrossRef]
- Shneiderman, B.; Plaisant, C. Designing the User Interface: Strategies for Effective Human-Computer Interaction; Pearson: London, UK, 2005. [Google Scholar]
- Adamo-Villani, N. A Virtual Learning Environment for Deaf Children: Design and evaluation. Int. J. Hum. Soc. Sci. 2007, 2, 123–128. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñeñory, V.M.; Manresa-Yee, C.; Riquelme, I.; Collazos, C.A.; Fardoun, H.M. Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children. Sensors 2018, 18, 2546. https://doi.org/10.3390/s18082546
Peñeñory VM, Manresa-Yee C, Riquelme I, Collazos CA, Fardoun HM. Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children. Sensors. 2018; 18(8):2546. https://doi.org/10.3390/s18082546
Chicago/Turabian StylePeñeñory, Victor M., Cristina Manresa-Yee, Inmaculada Riquelme, Cesar A. Collazos, and Habib M. Fardoun. 2018. "Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children" Sensors 18, no. 8: 2546. https://doi.org/10.3390/s18082546
APA StylePeñeñory, V. M., Manresa-Yee, C., Riquelme, I., Collazos, C. A., & Fardoun, H. M. (2018). Scoping Review of Systems to Train Psychomotor Skills in Hearing Impaired Children. Sensors, 18(8), 2546. https://doi.org/10.3390/s18082546