Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Pressure Dependency of the SHT75 in CO2
3.2. Temperature Dependency of the SHT75 in CO2
3.3. Cross-Sensitivity of the SHT75 to CO2
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rummel, J.D.; Beaty, D.W.; Jones, M.A.; Bakermans, C.; Barlow, N.G.; Boston, P.J.; Chevrier, V.F.; Clark, B.C.; de Vera, J.-P.P.; Gough, R.V.; et al. A New Analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 2014, 14, 887–968. [Google Scholar] [CrossRef] [PubMed]
- Domagal-Goldman, S.D.; Wright, K.E.; Adamala, K.; Arina de la Rubia, L.; Bond, J.; Dartnell, L.R.; Goldman, A.D.; Lynch, K.; Naud, M.-E.; Paulino-Lima, I.G.; et al. The Astrobiology Primer v2.0. Astrobiology 2016, 16, 561–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council; Division on Earth and Life Studies; Board on Life Sciences; Division on Engineering and Physical Sciences; Space Studies Board. Committee on an Astrobiology Strategy for the Exploration of Mars. An Astrobiology Strategy for the Exploration of Mars; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10851-5. [Google Scholar]
- Kereszturi, A.; Möhlmann, D.; Berczi, S.; Ganti, T.; Horvath, A.; Kuti, A.; Sik, A.; Szathmary, E. Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 2010, 207, 149–164. [Google Scholar] [CrossRef]
- Lorek, A.; Wagner, N. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy. Cryosphere 2013, 7, 1839–1855. [Google Scholar] [CrossRef] [Green Version]
- Pál, B.; Kereszturi, Á. Possibility of microscopic liquid water formation at landing sites on Mars and their observational potential. Icarus 2017, 282, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H.; et al. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science 2013, 341, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Lorek, A. Humidity measurement with capacitive humidity sensors between −70 °C and 25 °C in low vacuum. J. Sens. Sens. Syst. 2014, 3, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.L.; Merrison, J.; Hansen, A.A.; Mikkelsen, K.A.; Kristoffersen, T.; Nørnberg, P.; Lomstein, B.A.; Finster, K. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH). Astrobiology 2008, 8, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Sobrado, J.M.; Martín-Soler, J.; Martín-Gago, J.A. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration. Rev. Sci. Instrum. 2014, 85, 035111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.; Cockell, C.S. PELS (Planetary Environmental Liquid Simulator): A New Type of Simulation Facility to Study Extraterrestrial Aqueous Environments. Astrobiology 2015, 15, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zent, A.P.; Hecht, M.H.; Hudson, T.L.; Wood, S.E.; Chevrier, V.F. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor: Phoenix Humidity Results. J. Geophys. Res. Planets 2016, 121, 626–651. [Google Scholar] [CrossRef]
- Gómez-Elvira, J.; Armiens, C.; Castañer, L.; Domínguez, M.; Genzer, M.; Gómez, F.; Haberle, R.; Harri, A.-M.; Jiménez, V.; Kahanpää, H.; et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Sci. Rev. 2012, 170, 583–640. [Google Scholar] [CrossRef]
- Lorek, A.; Koncz, A. Simulation and measurement of extraterrestrial conditions for experiments on habitability with respect to Mars. In Habitability of Other Planets and Satellites; de Vera, J.-P., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 28, pp. 145–162. ISBN 978-94-007-6545-0. [Google Scholar]
- Ghoshal, S.; Hazra, M.K. H2CO3 → CO2 + H2O decomposition in the presence of H2O, HCOOH, CH3COOH, H2SO4 and HO2 radical: Instability of the gas-phase H2CO3 molecule in the troposphere and lower stratosphere. RSC Adv. 2015, 5, 17623–17635. [Google Scholar] [CrossRef]
- Harris, D.C. Lehrbuch der Quantitativen Analyse; Springer-Verlag: Berlin, Germany, 2014; ISBN 978-3-642-37787-7. [Google Scholar]
- Hartmann-Schreier, J. Kohlendioxid. RÖMPP Online. Available online: https://roempp.thieme.de/roempp4.0/do/data/RD-11-01458 (accessed on 28 February 2018).
- Nishino, J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal. Fuel 2001, 80, 757–764. [Google Scholar] [CrossRef]
- Xing, W.; Liu, C.; Zhou, Z.; Zhou, J.; Wang, G.; Zhuo, S.; Xue, Q.; Song, L.; Yan, Z. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons. Nanoscale Res. Lett. 2014, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Majewski, J. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors. Metrol. Meas. Syst. 2017, 24. [Google Scholar] [CrossRef]
- Ryan, J.A.; Sharman, R.D. H2O frost point detection on Mars? J. Geophys. Res. 1981, 86, 503. [Google Scholar] [CrossRef]
- Koncz, A. Entwicklung und Schaffung eines in-situ Feuchtemessgerätes für den Mars im Zusammenhang mit der ESA Marsmission ExoMars. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, May 2012. [Google Scholar]
T | p | |||
---|---|---|---|---|
1000 hPa | 500 hPa | 200 hPa | 10 hPa | |
10 °C | 84 | 37 | - | - |
12 | 7 | - | - | |
0 °C | 70 | 74 | 30 | - |
7 | 7 | 7 | - | |
−10 °C | 67 (74) | 68 (75) | 64 (71) | - |
21 (23) | 5 (6) | 6 (7) | - | |
−20 °C | 65 (79) | 67 (81) | 70 (85) | - |
9 (11) | 7 (9) | 5 (7) | - | |
−30 °C | 59 (80) | 62 (83) | 67 (90) | 18 (24) |
16 (22) | 4 (5) | 6 (8) | 8 (10) | |
−40 °C | 54 (79) | 53 (79) | 56 (83) | 56 (82) |
2 (3) | 3 (5) | 7 (10) | 7 (10) | |
−50 °C | (100) | (97) | (87) | (100) |
(20) | (19) | (17) | (14) | |
−60 °C | - | (88) | (86) | (99) |
- | (18) | (19) | (14) | |
−70 °C | - | - | (96) | (91) |
- | - | (34) | (9) |
Pressure [hPa] | Temperature [°C] | Fit Equation |
---|---|---|
1000 | 10 | |
0 | ||
−10 | ||
−20 | ||
−30 | ||
−40 | ||
−50 | ||
500 | 10 | |
0 | ||
−10 | ||
−20 | ||
−30 | ||
−40 | ||
−50 | ||
−60 | ||
200 | 0 | |
−10 | ||
−20 | ||
−30 | ||
−40 | ||
−50 | ||
−60 | ||
−70 | ||
10 | −30 | |
−40 | ||
−50 | ||
−60 | ||
−70 |
Pressure | Equation | Range of Validity |
---|---|---|
1000 hPa | −50 °C to 10 °C | |
−50 °C to 10 °C | ||
−10 °C to 10 °C | ||
10 hPa | −70 °C to −30 °C | |
−70 °C to −30 °C | ||
−70 °C to −40 °C |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorek, A.; Majewski, J. Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure. Sensors 2018, 18, 2615. https://doi.org/10.3390/s18082615
Lorek A, Majewski J. Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure. Sensors. 2018; 18(8):2615. https://doi.org/10.3390/s18082615
Chicago/Turabian StyleLorek, Andreas, and Jacek Majewski. 2018. "Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure" Sensors 18, no. 8: 2615. https://doi.org/10.3390/s18082615
APA StyleLorek, A., & Majewski, J. (2018). Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure. Sensors, 18(8), 2615. https://doi.org/10.3390/s18082615