Galfenol Thin Films and Nanowires
Abstract
:1. Introduction
2. Galfenol Films and Properties
3. Galfenol Nanowires and Properties
4. Bio Applications: Flow Sensors, Purification, Barcodes, RFID Nanotags, and MRI Contrast
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGary, P.D.; Tan, L.; Zou, J.; Stadler, B.J.; Downey, P.R.; Flatau, A.B. Magnetic nanowires for acoustic sensors. J. Appl. Phys. 2006, 99, 08B310. [Google Scholar] [CrossRef]
- Clark, A.E.; Restorff, J.B.; Wun-Fogle, M.; Lograsso, T.A.; Schlagel, D.L. Magnetostrictive properties of body-centered cubic Fe-Ga and Fe-Ga-Al alloys. IEEE Trans. Magn. 2000, 36, 3238–3240. [Google Scholar] [CrossRef]
- Brooks, M.; Summers, E.; Restorff, J.B.; Wun-Fogle, M. Behavior of magnetic field—Annealed Galfenol steel. J. Appl. Phys. 2012, 111, 07A907. [Google Scholar] [CrossRef]
- Restorff, J.B.; Wun-Fogle, M.; Clark, A.E.; Hathaway, K.B. Induced magnetic anisotropy in stress-annealed Galfenol alloys. IEEE Trans. Magn. 2006, 42, 3087–3089. [Google Scholar] [CrossRef]
- Atulasimha, J.; Flatau, A.B. A review of magnetostrictive iron—Gallium alloys. Smart Mater. Struct. 2011, 20, 043001. [Google Scholar] [CrossRef]
- Mudivarthi, C.; Datta, S.; Atulasimha, J.; Flatau, A.B. A bidirectionally coupled magnetoelastic model and its validation using a Galfenol unimorph sensor. Smart Mater. Struct. 2008, 17, 035005. [Google Scholar] [CrossRef]
- Petculescu, G.; Hathaway, K.B.; Lograsso, T.A.; Wun-Fogle, M.; Clark, A.E. Magnetic field dependence of galfenol elastic properties. J. Appl. Phys. 2005, 97, 10M315. [Google Scholar] [CrossRef]
- Basantkumar, R.R.; Stadler, B.H.; Robbins, W.P.; Summers, E.M. Integration of thin-film galfenol with MEMS cantilevers for magnetic actuation. IEEE Trans. Magn. 2006, 42, 3102–3104. [Google Scholar] [CrossRef]
- McGary, P.D.; Stadler, B.J.H. Electrochemical deposition of Fe1−xGax nanowire arrays. J. Appl. Phys. 2005, 97, 10R503. [Google Scholar] [CrossRef]
- Lupu, N.; Chiriac, H.; Pascariu, P. Electrochemical deposition of Fe Ga/Ni Fe magnetic multilayered films and nanowire arrays. J. Appl. Phys. 2008, 103, 07B511. [Google Scholar] [CrossRef]
- McGary, P.D.; Reddy, K.S.; Haugstad, G.D.; Stadler, B.J. Combinatorial electrodeposition of magnetostrictive Fe1−xGax. J. Electrochem. Soc. 2010, 157, D656–D665. [Google Scholar] [CrossRef]
- Hull, R.O. Apparatus and Process for the Study of Plating Solutions. U.S. Patent 2,149,344, 7 March 1939. [Google Scholar]
- Reddy, K.S.; Maqableh, M.M.; Stadler, B.J. Epitaxial Fe1−xGax/GaAs Structures via Electrochemistry for Spintronic Applications. J. Appl. Phys. 2012, 111, 07E502. [Google Scholar] [CrossRef]
- Reddy, K.S.; Estrine, E.C.; Lim, D.H.; Smyrl, W.H.; Stadler, B.J. Controlled Electrochemical Deposition of Magnetostrictive Fe1−xGax Alloys. Electrochem. Commun. 2012, 18, 127–130. [Google Scholar] [CrossRef]
- Podlaha, E.J.; Landolt, D. Induced codeposition III. Molybdenum alloys with nickel, cobalt, and iron. J. Electrochem. Soc. 1997, 144, 1672–1680. [Google Scholar] [CrossRef]
- Estrine, E.C.; Hein, M.; Robbins, W.P.; Stadler, B.J. Composition and Crystallinity in Electrochemically Deposited Magnetostrictive Galfenol (FeGa). J. Appl. Phys. 2014, 115, 17A918. [Google Scholar] [CrossRef]
- Estrine, E.C.; Robbins, W.P.; Maqableh, M.M.; Stadler, B.J. Electrodeposition and characterization of magnetostrictive Galfenol (FeGa) thin films for use in MEMS. J. Appl. Phys. 2013, 113, 17A937. [Google Scholar] [CrossRef]
- Vargas-Estevez, C.; Blanquer, A.; Dulal, P.; del Real, R.P.; Duch, M.; Ibáñez, E.; Barrios, L.; Murillo, G.; Torras, N.; Nogués, C.; et al. Study of Galfenol direct cytotoxicity and remote microactuation in cells. Biomaterials 2017, 139, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X. Constricted Current Perpendicular to Plane (CPP) Magnetic Sensor via Electroplating. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2011. [Google Scholar]
- Reddy, S.M.; Park, J.J.; Na, S.M.; Maqableh, M.M.; Flatau, A.B.; Stadler, B.J. Electrochemical Synthesis of Magnetostrictive Fe-Ga/Cu Multilayered Nanowire Arrays with Tailored Magnetic Response. Adv. Funct. Mater. 2011, 21, 4677–4683. [Google Scholar] [CrossRef]
- Maqablah, M.; Tan, L.; Huang, X.; Cobian, R.; Norby, G.; Victora, R.H.; Stadler, B.J.H. CPP GMR through Nanowires (Invited). IEEE Trans. Magn. 2012, 48, 1–7. [Google Scholar]
- Tan, L. Templated Synthesis of Magnetic Nanowires by Electrochemical Deposition. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 2009. [Google Scholar]
- Zou, J.; Qi, X.; Tan, L.; Stadler, B.J.H. Nanoporous Silicon with Long-Range-Order using Imprinted Anodic Alumina Etch Masks. Appl. Phys. Lett. 2006, 89, 093106. [Google Scholar] [CrossRef]
- Masuda, H.; Yamada, H.; Satoh, M.; Asoh, H.; Nakao, M.; Tamamura, T. Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 1997, 71, 2770–2772. [Google Scholar] [CrossRef]
- Choi, J.; Nielsch, K.; Reiche, M.; Wehrspohn, R.B.; Gösele, U. Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp. J. Vac. Sci. Technol. B 2003, 21, 763–766. [Google Scholar] [CrossRef]
- Sung, S.; Maqablah, M.; Huang, X.; Reddy, K.S.M.; Victora, R.H.; Stadler, B.J.H. Metallic 10 nm Diameter Nanowire Magnetic Sensors and Large-Scale Ordered Arrays. IEEE Trans. Magn. 2014, 50, 1–5. [Google Scholar] [CrossRef]
- Huang, X.; Tan, L.; Cho, H.; Stadler, B.J.H. Magnetoresistance and Spin Transfer Torque in Electrodeposited Co/Cu Multilayered Nanowire Arrays with Small Diameters. J. Appl. Phys. 2009, 103, 07B504. [Google Scholar] [CrossRef]
- Maqableh, M.M.; Huang, X.; Sung, S.Y.; Reddy, K.S.; Norby, G.; Victora, R.H.; Stadler, B.J. Low Resistivity 10 nm Diameter Magnetic Sensors. Nano Lett. 2012, 12, 4102–4109. [Google Scholar] [CrossRef] [PubMed]
- Downey, P.R.; Flatau, A.B.; McGary, P.D.; Stadler, B.J.H. Effect of magnetic field on the mechanical properties of magnetostrictive iron-gallium nanowires. J. Appl. Phys. 2008, 103, 07D305. [Google Scholar] [CrossRef]
- Park, J.J.; Reddy, M.; Mudivarthi, C.; Downey, P.R.; Stadler, B.J.H.; Flatau, A.B. Characterization of the magnetic properties of multilayer magnetostrictive Iron-Gallium nanowires. J. Appl. Phys. 2010, 107, 09A954. [Google Scholar] [CrossRef]
- Park, J.J.; Reddy, M.; Stadler, B.J.H.; Flatau, A.B. Hysteresis measurement of individual multilayered Fe-Ga/Cu nanowires using magnetic force microscopy. J. Appl. Phys. 2013, 113, 17A331. [Google Scholar] [CrossRef]
- Park, J.J.; Estrine, E.C.; Stadler, B.J.H.; Flatau, A.B. Technique for measurement of magnetostriction in an individual nanowire using atomic force microscopy. J. Appl. Phys. 2014, 115, 17A919. [Google Scholar] [CrossRef]
- Park, J.J.; Reddy, S.M.; Stadler, B.J.H.; Flatau, A.B. Magnetostrictive Fe-Ga/Cu Nanowires Array with GMR Sensor for Sensing Applied Pressure. IEEE Sens. J. 2017, 17, 2015–2020. [Google Scholar] [CrossRef]
- Grutter, A.J.; Krycka, K.L.; Tartakovskaya, E.V.; Borchers, J.A.; Reddy, K.S.; Ortega, E.; Ponce, A.; Stadler, B.J. Frustrated Long-Range Magnetic Domain Structure in High-Density Nanowire Arrays. ACS Nano 2017, 11, 8311–8319. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Reddy, S.M.; Betancourt, I.; Roughani, S.; Stadler, B.J.H.; Ponce, A. Magnetic ordering in 45 nm-diameter multisegmented FeGa/Cu nanowires: Single nanowires and arrays. J. Mater. Chem. C 2017, 5, 7546–7552. [Google Scholar] [CrossRef]
- Hein, M.; Maqableh, M.; Delahunt, M.; Tondra, M.; Flatau, A.; Shield, C.; Stadler, B. Fabrication of BioInspired Inorganic Nanocilia Sensors. IEEE Trans. Magn. 2013, 49, 191–194. [Google Scholar] [CrossRef]
- Sharma, A.; Zhu, Y.; Thor, S.; Zhou, F.; Stadler, B.; Hubel, A. Magnetic Barcode Nanowires for Osteosarcoma Cell Control, Detection, and Separation. IEEE Trans. Magn. 2013, 49, 453–456. [Google Scholar] [CrossRef]
- Sharma, A.; Orlowski, G.M.; Zhu, Y.; Shore, D.; Kim, S.Y.; DiVito, M.; Hubel, A.; Stadler, B.J.H. Inducing cells to self-disperse non-toxic Ni nanowires via integrin-mediated responses. Nanotechnology 2015, 26, 135102. [Google Scholar] [CrossRef] [PubMed]
- Estrine, E.; Riemer, S.; Venkatosamy, V.; Stadler, B.; Tabakovic, I. Mechanism and Stability Study of Gold Electrodeposition from Thiosulfate-Sulfite Solution. J. Electrochem. Soc. 2014, 161, D687–D696. [Google Scholar] [CrossRef]
- Reddy, K.S.M.; Park, J.J.; Maqableh, M.M.; Flatau, A.B.; Stadler, B.J.H. Magnetization Reversal Mechanisms in 35-nm Diameter Fe1−xGax/Cu Multilayered Nanowires. J. Appl. Phys. 2012, 111, 07A920. [Google Scholar] [CrossRef]
- Sharma, A.; DiVito, M.D.; Shore, D.E.; Block, A.D.; Pollock, K.; Solheid, P.; Feinberg, J.M.; Modiano, J.; Lam, C.H.; Hubel, A.; et al. Alignment of collagen matrices using magnetic nanowires and magnetic barcodereadout using first order reversal curves (FORC). J. Magn. Magn. Mater. 2018, 459, 176–181. [Google Scholar] [CrossRef]
- Zhou, W.; Um, J.; Zhang, Y.; Nelson, A.; Stadler, B.; Franklin, R. Ferromagnetic Resonance Characterization of Magnetic Nanowires for Biolabel Applications. In Proceedings of the IMBioC of the 2018 IEEE MTT-S International Microwave Symposium, Philadelphia, PA, USA, 10–15 June 2018. [Google Scholar]
- Um, J.; Zhou, W.; Franklin, R.; Stadler, B. Detection of Nanowires for RFID Biolabels using Ferromagnetic Resonance. In Proceedings of the Spring 2018 Materials Research Society Meeting, Phoenix, AZ, USA, 2–6 April 2018. [Google Scholar]
- Zhou, W.; Um, J.; Stadler, B.; Franklin, R. Design of self-biased coplanar circulator with ferromagnetic nanowires. In Proceedings of the Radio and Wireless Symposium (RWS), Anaheim, CA, USA, 15–18 January 2018; pp. 240–242. [Google Scholar]
- Shore, D.; Pailloux, S.L.; Zhang, J.; Gage, T.; Flannigan, D.J.; Garwood, M.; Pierre, V.C.; Stadler, B.J. Electrodeposited Fe and Fe-Au Nanowires as MRI Contrast Agents. Chem. Commun. 2016, 52, 12634–12637. [Google Scholar] [CrossRef] [PubMed]
ID | Fe2+:Ga3+ Ion Ratio | [Fe2SO4] (M) | [Ga2(SO4)3] (M) | Na-Cit (M) |
---|---|---|---|---|
A1 | 1:5 | 0.01 | 0.025 | 0.05 |
B1 | 1:5 | 0.02 | 0.05 | 0.1 |
B2 | 1:2.5 | 0.04 | 0.05 | 0.1 |
C2 | 1:2.5 | 0.04 | 0.05 | 0.1 |
C3 | 1:2.5 | 0.04 | 0.05 | 0.15 |
C4 | 1:2.5 | 0.04 | 0.05 | 0.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stadler, B.J.H.; Reddy, M.; Basantkumar, R.; McGary, P.; Estrine, E.; Huang, X.; Sung, S.Y.; Tan, L.; Zou, J.; Maqableh, M.; et al. Galfenol Thin Films and Nanowires. Sensors 2018, 18, 2643. https://doi.org/10.3390/s18082643
Stadler BJH, Reddy M, Basantkumar R, McGary P, Estrine E, Huang X, Sung SY, Tan L, Zou J, Maqableh M, et al. Galfenol Thin Films and Nanowires. Sensors. 2018; 18(8):2643. https://doi.org/10.3390/s18082643
Chicago/Turabian StyleStadler, Bethanie J. H., Madhukar Reddy, Rajneeta Basantkumar, Patrick McGary, Eliot Estrine, Xiaobo Huang, Sang Yeob Sung, Liwen Tan, Jia Zou, Mazin Maqableh, and et al. 2018. "Galfenol Thin Films and Nanowires" Sensors 18, no. 8: 2643. https://doi.org/10.3390/s18082643
APA StyleStadler, B. J. H., Reddy, M., Basantkumar, R., McGary, P., Estrine, E., Huang, X., Sung, S. Y., Tan, L., Zou, J., Maqableh, M., Shore, D., Gage, T., Um, J., Hein, M., & Sharma, A. (2018). Galfenol Thin Films and Nanowires. Sensors, 18(8), 2643. https://doi.org/10.3390/s18082643