High Temperature High Sensitivity Multipoint Sensing System Based on Three Cascade Mach–Zehnder Interferometers
Abstract
:1. Introduction
2. Schematic of the Experimental Setup
3. Results and Discussion
4. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FFT | fast Fourier transform |
FBG | fiber Bragg grating |
MZI | Mach–Zehnder interferometer |
SMF | single mode fiber |
IFFT | inverse fast Fourier transform |
DMI | dual-mode interference |
BBS | broad–band light source |
OSA | optical spectrum analyzer |
References
- Ji, Y.; Chung, Y.; Sprinzak, D.; Heiblum, M.; Mahalu, D.; Shtrikman, H. An electronic Mach-Zehnder interferometer. Nature 2013, 6930, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Bühler, L.; Aiello, G.; Bendotti, S.; Koehly, C.; Mistrangelo, C.; Galabert, J. Development of combined temperature—Electric potential sensors. Fusion Eng. Des. 2017. [Google Scholar] [CrossRef]
- Stancălie, A.; Esposito, F.; Ranjan, R.; Bleotu, P.; Campopiano, S.; Iadicicco, A. Arc-induced Long Period Gratings in standard and speciality optical fibers under mixed neutron-gamma irradiation. Sci. Rep. 2017, 7, 15845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolo, S.; Périsse, J.; Boukenter, A.; Ouerdane, Y.; Marin, E.; Macé, J. Real time monitoring of water level and temperature in storage fuel pools through optical fibre sensors. Sci. Rep. 2017, 7, 8766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Wang, Y.; Liao, C.; Ying, W.; He, J.; Fu, C. Nano silica diaphragm in-fiber cavity for gas pressure measurement. Sci. Rep. 2017, 7, 787. [Google Scholar]
- Signorini, A.; Nannipieri, T.; Pasquale, F.D.; Gabella, L.; Latini, G.; Ripari, D. Raman distributed temperature sensor for oil leakage detection in soil: A field trial and future trends. In Proceedings of the International Conference on Optical Fibre Sensors, Santander, Spain, 2–6 June 2014; pp. 101–105. [Google Scholar]
- Yu, M.; Liu, Y.; Cui, H.L.; Chang, T. Ambient condition desensitization of a fiber Raman temperature sensing system based on a dynamic sampling–correction scheme. Appl. Opt. 2015, 54, 4823–4827. [Google Scholar] [CrossRef] [PubMed]
- Fanjoux, G.; Margueron, S.; Beugnot, J.C.; Sylvestre, T. Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber. JOSA B 2017, 34, 1677–1683. [Google Scholar] [CrossRef]
- Rusen, Y.; Jeffrey, R.S.; Simone, B.I.; Jacopo, B.; Michael, W.; Xufei, W.; Andras, K.; Tengfei, L.; Angela, R.H.W.; Huili, G.X. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993. [Google Scholar]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Gaur, A.P.S.; Ahmadi, M.; Guinel, J.F.; Katiyar, R.S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047. [Google Scholar] [CrossRef]
- Kumar, A.; Kumari, S.; Borkar, H.; Katiyar, R.S.; Scott, J.F. Experimental verification of the ab initio phase transition sequence in SrZrO3 and comparisons with SrHfO3 and SrSnO3. NPJ Comput. Mater. 2017, 3, 2. [Google Scholar] [CrossRef]
- Toko, K.; Yoshimine, R.; Moto, K.; Suemasu, T. High-hole mobility polycrystalline Ge on an insulator formed by controlling precursor atomic density for solid-phase crystallization. Sci. Rep. 2017, 7, 16981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplas, T.; Matikainen, A.; Nuutinen, T.; Suvanto, S.; Vahimaa, P.; Svirko, Y. Scalable fabrication of the graphitic substrates for graphene-enhanced Raman spectroscopy. Sci. Rep. 2017, 7, 8561. [Google Scholar] [CrossRef] [PubMed]
- Yalon, E.; Deshmukh, S.; Muñoz, R.M.; Lian, F.; Neumann, C.M.; Xiong, F. Spatially resolved thermometry of resistive memory devices. Sci. Rep. 2017, 7, 15360. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Chen, G. High-temperature measurement with Brillouin optical time domain analysis of an annealed fused-silica single-mode fiber. Opt. Lett. 2016, 41, 3177–3180. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Chen, G. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis. Meas. Sci. Technol. 2016, 27, 065101. [Google Scholar] [CrossRef]
- Hervás, J.; Barrera, D.; Madrigal, J.; Sales, S. Microwave photonics filtering interrogation technique under coherent regime for hot spot detection on cascaded FBG fiber. In Proceedings of the Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; pp. 1–4. [Google Scholar]
- Hervás, J.; Fernándezpousa, C.R.; Barrera, D.; Pastor, D.; Sales, S.; Capmany, J. An interrogation technique of FBG cascade sensors using wavelength to radio-frequency delay mapping. J. Lightware Technol. 2015, 33, 2222–2227. [Google Scholar] [CrossRef]
- Ricchiuti, A.L.; Hervás, J.; Barrera, D.; Sales, S.; Capmany, J. Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor. IEEE Photonics J. 2014, 6, 1–10. [Google Scholar] [CrossRef]
- Woyessa, G.; Fasano, A.; Stefani, A.; Markos, C.; Nielsen, K.; Rasmussen, H.K. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 2016, 24, 1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Xu, S.; Zhao, J.; Li, H.; Bai, H.; Miao, C. Multipoint refractive index and temperature fiber optic sensor based on cascaded no core fiber-fiber Bragg grating structures. Opt. Eng. 2017, 56, 027102. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Bao, D.; Yang, R.; Yan, Q.; Gao, F. Optimization design of the tuning method for FBG spectroscopy based on the numerical analysis of all-fiber Raman temperature lidar. Opt. Fiber Technol. 2018, 40, 165–171. [Google Scholar] [CrossRef]
- Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C.; Bang, O. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganziy, D.; Rose, B.; Bang, O. Performance of low-cost few-mode fiber Bragg grating sensor systems, polarization sensitivity and linearity of temperature and strain response. Appl. Opt. 2016, 55, 6156–6161. [Google Scholar] [CrossRef] [PubMed]
- Zaynetdinov, M.; See, E.M.; Geist, B.; Ciovati, G.; Robinson, H.D.; Kochergin, V. A Fiber Bragg Grating Temperature Sensor for 2400 K. IEEE Sens. J. 2015, 15, 1908–1912. [Google Scholar] [CrossRef]
- Li, T.; Tan, Y.; Han, X.; Zheng, K.; Zhou, Z. Diaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation. Sensors 2017, 17, 218. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.B.; Joyce, P.; Mechtel, D. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors. Sensors 2017, 17, 251. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Shao, Z.; Bao, W.; Rong, Q. Fiber Bragg grating sensors for the oil industry. Sensors 2017, 17, 429. [Google Scholar] [CrossRef] [PubMed]
- Chah, K.; Kinet, D.; Caucheteur, C. Negative axial strain sensitivity in gold-coated eccentric fiber Bragg gratings. Sci. Rep. 2016, 6, 38042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Hiromasa, M. Multipoint Fiber Bragg Grating Sensing Using Two-Photon Absorption Process in Silicon Avalanche Photodiode. J. Lightwave Technol. 2018, 36, 1032–1038. [Google Scholar] [CrossRef]
- Yan, A.; Huang, S.; Li, S.; Chen, R.; Ohodnicki, P.; Buric, M. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations. Sci. Rep. 2017, 7, 9360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Liao, C.; Wang, Y.; Yin, G.; Zhong, X.; Yang, K. Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer. Opt. Express 2014, 22, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Harris, E.; Chen, L.; Bao, X. Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor. Opt. Express 2010, 18, 8135–8143. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhao, N.; Shao, M.; Li, H. High-Sensitivity Mach–Zehnder Interferometric Curvature Fiber Sensor Based on Thin-Core Fiber. Sens. J. IEEE 2015, 15, 520–525. [Google Scholar]
- Liu, Q.; Wang, S.W.; Fu, X.H.; Fu, G.W.; Jin, W.; Bi, W.H. Refractive index insensitive temperature sensor based on waist-enlarged few mode fiber bitapers. Optoelectron. Lett. 2017, 13, 25–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Du, C.; Ruan, S.; Chen, X.; Huang, Q. Strain-independent high-temperature sensor with a suspended-core fiber based Mach–Zehnder interferometer. Opt. Fiber Technol. 2016, 29, 6–12. [Google Scholar] [CrossRef]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Yu, Y. High-sensitivity Mach–Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper. IEEE Sens. J. 2011, 11, 2891–2894. [Google Scholar] [CrossRef]
- Zhu, T.; Duan, D.W.; Chiang, K.S.; Deng, M. In-Line Single-Mode Fiber Interferometers based on Peanut-Shape Fiber Structure. In Proceedings of the OFS2012 22nd International Conference on Optical Fiber Sensor, Beijing, China, 14–19 October 2012. [Google Scholar]
- Nguyen, V.; Hwang, D.; Moon, S.; Chung, D.S.M.Y. High temperature fiber sensor with high sensitivity based on core diameter mismatch. Opt. Express 2008, 16, 11369–11375. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, A.P.; Xia, T.H.; Xue, S.H.W. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer. IEEE Sens. J. 2010, 10, 1415–1418. [Google Scholar]
- Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach–Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Liao, C.; Wang, D.N.; Yang, M.; Lu, P. High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer. IEEE Photonics Technol. Lett. 2010, 22, 39–41. [Google Scholar] [CrossRef]
- Liu, A.Y.; Peng, W.; Liang, Y.; Zhang, X.; Zhou, X.; Pan, L. Fiber-optic Mach–Zehnder interferometric sensor for high-sensitivity high temperature measurement. Opt. Commun. 2013, 300, 194–198. [Google Scholar] [CrossRef]
- Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lu, P.; Chen, L.; Bao, X. Recent developments in micro-structured fiber optic sensors. Fibers 2017, 5, 3. [Google Scholar] [CrossRef]
LP0x | LP1x | |||
---|---|---|---|---|
X | nLP0x | Δneff | nLP1x | Δneff |
1 | 1.4658679 | 0 | 1.4630794 | 0.0027885 |
2 | 1.4627498 | 0.0031181 | 1.4627169 | 0.003151 |
3 | 1.4625833 | 0.0032846 | 1.4625135 | 0.0033544 |
4 | 1.4623038 | 0.0035641 | 1.4621959 | 0.003672 |
5 | 1.4619147 | 0.0039532 | 1.461768 | 0.0040999 |
6 | 1.4614194 | 0.0044485 | 1.4612316 | 0.0046363 |
7 | 1.4608213 | 0.0050466 | 1.460588 | 0.0052799 |
8 | 1.4601245 | 0.0057434 | 1.459838 | 0.0060299 |
9 | 1.4593324 | 0.0065355 | 1.4589826 | 0.0068853 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Lin, Q.; Jiang, Z.; Yao, K.; Tian, B.; Fang, X.; Shi, P.; Zhang, Z. High Temperature High Sensitivity Multipoint Sensing System Based on Three Cascade Mach–Zehnder Interferometers. Sensors 2018, 18, 2688. https://doi.org/10.3390/s18082688
Zhao N, Lin Q, Jiang Z, Yao K, Tian B, Fang X, Shi P, Zhang Z. High Temperature High Sensitivity Multipoint Sensing System Based on Three Cascade Mach–Zehnder Interferometers. Sensors. 2018; 18(8):2688. https://doi.org/10.3390/s18082688
Chicago/Turabian StyleZhao, Na, Qijing Lin, Zhuangde Jiang, Kun Yao, Bian Tian, Xudong Fang, Peng Shi, and Zhongkai Zhang. 2018. "High Temperature High Sensitivity Multipoint Sensing System Based on Three Cascade Mach–Zehnder Interferometers" Sensors 18, no. 8: 2688. https://doi.org/10.3390/s18082688
APA StyleZhao, N., Lin, Q., Jiang, Z., Yao, K., Tian, B., Fang, X., Shi, P., & Zhang, Z. (2018). High Temperature High Sensitivity Multipoint Sensing System Based on Three Cascade Mach–Zehnder Interferometers. Sensors, 18(8), 2688. https://doi.org/10.3390/s18082688