Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Sampling
2.2. Data Collection
2.2.1. Leaf Spectra Data Measurement
2.2.2. Estimation of Leaf Chlorophyll Concentration
2.2.3. Estimation of Relative Water Content (RWC)
2.3. Data Analysis
3. Result
3.1. Effect of Aphid Infestation on Chlorophyll and RWC
3.2. Identification of Sensitive Bands and Band Ratios
3.3. Testing of Hyperspectral VIs for Aphid Damage Severity
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Strange, R.N.; Scott, P.R. Plant disease: A threat to global food security. Ann. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Suhail, A. Studying the sucking insect pests community in transgenic Bt cotton. Int. J. Agric. Biol. 2010, 12, 764–768. [Google Scholar]
- Slosser, E.J.; Pinchak, E.W.; Rummel, R.D. A review of known and potential factors affecting the population dynamics of the cotton aphid. Southwest. Entomol. 1989, 14, 302–313. [Google Scholar]
- Elmer, H.S.; Brawner, O.L. Control of brown soft scale in central valley. Citrograph 1975, 60, 402–403. [Google Scholar]
- Sankanran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Delalieux, S.; Somers, B.; Verstraeten, W.W.; Aardt, J.A.N.V.; Keulemans, W.; Coppin, P. Hyperspectral indices to diagnose leaf biotic stress of apple plants considering leaf phenology. Int. J. Remote Sens. 2009, 30, 1887–1912. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Pinter, P.J. Remote sensing for crop protection. Crop. Prot. 1993, 12, 403–413. [Google Scholar] [CrossRef]
- Escalante-Ramirez, B. Remote Sensing Applications. In Crop Disease and Pest Monitoring by Remote Sensing; Huang, W.J., Ed.; Intech: Rijeka, Croatia, 2012; Chapter 2. [Google Scholar]
- Prabhakar, M.; Prasad, Y.G.; Thirupathi, M.; Sreedevi, G.; Dharajothi, B.; Venkateswarlu, B. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Comput. Electron. Agric. 2011, 79, 189–198. [Google Scholar] [CrossRef]
- Prabhakar, M.; Prasad, Y.G.; Vennila, S.; Thirupathi, M.; Sreedevi, G.; Rao, G.R.; Venkateswarlu, B. Hyperspectral indices for assessing damage by the solenopsis mealybug (Hemiptera: Pseudococcidae) in cotton. Comput. Electron. Agric. 2013, 97, 61–70. [Google Scholar] [CrossRef]
- Reisig, D.; Godfrey, L. Remotely sensing arthropod and nutrient stressed plants—A case study with nitrogen and cotton aphid (Hemiptera: Aphididae). Environ. Entomol. 2010, 39, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Claudio, H.C.; Cheng, Y.; Fuentes, D.A.; Gamon, J.A.; Luo, H.; Oechel, W.; Qiu, H.; Rahman, A.F.; Sims, D.A. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index. Remote Sens. Environ. 2006, 103, 304–311. [Google Scholar] [CrossRef]
- Carter, G.A. Response of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Ceccato, P.; Stephane, F.; Stefano, T.; Jacquemond, S.; Gregoire, J.M. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens. Environ. 2001, 77, 22–33. [Google Scholar] [CrossRef]
- Colombo, R.; Meroni, M.; Marchesi, A.; Busetto, L.; Rossini, M.; Giardino, C.; Panigada, C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote. Sens. Environ. 2008, 112, 1820–1834. [Google Scholar] [CrossRef]
- Seelig, H.D.; Hoehn, A.; Stodieck, L.S.; Klaus, D.M.; Adams, W.W., III; Emery, W.J. Relations of remote sensing leaf water indices to leaf water thickness in cowpea, bean, and sugarbeet plants. Remote Sens. Environ. 2008, 112, 445–455. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Hunt, E.R., Jr.; Jackson, T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 2008, 112, 2514–2522. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.; Cao, W. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Kranthi, K.R.; Kranthi, S.; Rameash, K.; Nagrare, V.S.; Barik, A. Advances in Cotton IPM; Technical Bulletin; Central Research Institute for Cotton Research: Nagpur, India, 2009; p. 26. [Google Scholar]
- Pu, R.; Ge, S.; Kelly, N.M.; Gong, P. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. Int. J. Remote Sens. 2003, 24, 1799–1810. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different solution. J. Plant. Physiol. 2004, 144, 307–313. [Google Scholar] [CrossRef]
- Smart, R.E.; Bingham, G.E. Rapid estimates of relative water content. Plant. Physiol. 1976, 53, 258–260. [Google Scholar] [CrossRef]
- FieldSpec Pro User’s Guide; Advanced Systems Development, Inc.: Alexandria, VA, USA, 2002.
- Linnesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004; p. 763. [Google Scholar]
- Yao, X.; Zhu, Y.; Tian, Y.; Feng, W.; Cao, W. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectance in narrow wavebands as a indictors of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Rouse, J.W.J.; Hass, H.R.; Schell, A.J.; Deering, W.D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA Special Publication 1; The National Aeronautics and Space Administration: Washington, DC, USA, 1974; pp. 309–317.
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Detecting sugarcane orange rust disease using EO-1 Hyperion hyperspectral imagery. Int. J. Remote Sens. 2004, 25, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Mirik, M.; Michels, G.J.; Mirik, S.K.; Elliot, N.C.; Bowling, R. Hyperspectral spectrometry as a means to differentiate un-infested and infested winter wheat by Greenbug (Hemiptera: Aphididae). J. Econ. Entomol. 2006, 61, 319–346. [Google Scholar]
- Mirik, M.; Michels, J.; Kassymzhanova-Mirik, S.; Elliot, N.C.; Catana, V.; Jones, D.B.; Bowling, R. Using digital image analysis and spectral reflectance data to quantify greenbug (Homoptera: Aphididae) damage in winter wheat. Comput. Electron. Agric. 2006, 51, 86–98. [Google Scholar] [CrossRef]
- Barnes, J.D. A reappraisal of the use of DMSE for the extraction and determination of Chl a and b in lichens and higher plants. Environ. Exp. Bot. 1992, 2, 85–100. [Google Scholar] [CrossRef]
- Read, J.J.; Tarpley, L.; Mckinion, J.M.; Ready, K.R. Narrow-band reflectance ratios for remote estimation of nitrogen status in cotton. J. Environ. Qual. 2002, 31, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Read, J.J.; Koti, S. Selection of optimum reflectance ratios for estimating leaf nitrogen and chlorophyll concentrations of field-grown cotton. Agron. J. 2005, 97, 89–98. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pu, R.L.; Wang, J.H.; Huang, W.J.; Yuan, L.; Luo, J.H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Yang, C.M.; Cheng, C.H.; Chen, R.K. Changes in spectral characteristics of rice canopy infested with brown plant hopper and leaf folder. Crop. Sci. 2007, 47, 329–335. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Nolland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491. [Google Scholar] [CrossRef]
- Riedell, W.E.; Blackmer, T.M. Leaf reflectance spectra of cereal aphid damaged wheat. Crop. Sci. 1999, 39, 1835–1840. [Google Scholar] [CrossRef]
- Dai, Y.; Shao, M.; Hannaway, D.; Wang, L.; Liang, J.; Hu, L.; Lu, H. Effect of Thrips tabaci on anatomical features, photosynthetic characteristics and chlorophyll fluorescence of Hypericum sampsonii leaves. Crop. Prot. 2009, 28, 327–332. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for reflectance of visible and near infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Z.G.; Zhang, G.W.; Meng, Y.L.; Chen, B.L.; Wang, Y.H. Monitoring cotton (Gossypium hirsutum L.) leaf water content and specific leaf weight with leaf spectral reflectance in saline soil. Eur. J. Agron. 2012, 41, 103–117. [Google Scholar] [CrossRef]
- Fourty, T.; Baret, F.; Jacquemond, S.; Schmuck, G.; Verdebout, J. Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems. Remote Sens. Environ. 1996, 56, 104–117. [Google Scholar] [CrossRef]
Field 1 | Field 2 | |
---|---|---|
Latitude | 36°08′ N | 36°08′ N |
Longitude | 114°51′ E | 114°49′ E |
Altitude (m) | 320 | 320 |
District | Anyang | Anyang |
State | China | China |
Field size (m2) | 1200 | 1800 |
Cultivars | CCRI-79 | CCRI-79 |
Date of sowing | 10 April 2017 | 10 April 2017 |
Sampling date | 24 May 2017 | 24 May 2017 |
Sampling time | 10:30–12:30 | 10:30–12:30 |
Sampling number | 46 | 40 |
Grade | Symptom of Aphid Infestation |
---|---|
0 | Healthy plant with no pests |
1 | Few aphids scattered over the plant. Foliage free from crinkling or curling with no yellowing symptoms |
2 | Crinkling and curling of few leaves in the upper portion of plant |
3 | Crinkling and curling of leaves all most all over the plant |
4 | Extreme curling, crinkling and drying of leaves all over the plant, plant growth hampered |
Spectral Vegetation Index | Formula | References | |
---|---|---|---|
1 | Simple Ratio (SR) | (R695/R420) | Carter (1994) [26] |
2 | Normalized Difference Vegetation Index (NDVI) | (R800 − R670)/(R800 + R670) | Rouse et al. (1974) [27] |
3 | Disease Water Stress Index 2 (DWSI-2) | (R1660/R550) | Apan et al. (2004) [28] |
4 | Aphid index (AI) | (R761 − R908)/(R712 − R719) | Mirik et al. (2006) [29] |
5 | Damage sensitive Spectral Index-2 (DSSI 2) | (R747 − R901 − R537 − R572)/(R747 − R901) + (R537 − R572) | Mirik et al. (2006) [30] |
6 | Chlorophyll Index (CI) | (R415 − R435)/(R415 + R435) | Barnes (1992) [31] |
7 | Chl Stress Index 1 (Chl SI-1) | (R415/R695) | Read et al. (2002) [32] |
8 | Chl Stress Index 2 (Chl SI-2) | (R708/R915) | Zhao et al. (2005) [33] |
9 | Chl Stress Index 3 (Chl SI-3) | (R551/R915) | Zhao et al. (2005) [33] |
10 | Leaf Hopper Index (LHI) | (R761 − R691)/(R550 − R715) | Prabhakar et al. (2011) [9] |
11 | Nitrogen Stress Index 1 (NSI-1) | (R415/R710) | Read et al. (2002) [32] |
12 | Nitrogen Stress Index 2 (NSI-2) | (R517/R413) | Zhao et al. (2005) [33] |
13 | Mealybug Stress Index-1 (MSI-1) | (R550 + R768 + R1454) − [R1454/(R550 + R768)] | Prabhakar et al. (2013) [10] |
14 | Mealybug Stress Index-2 (MSI-2) | (R550 + R768) − (R674 + R1454)/(R1454 + R674) + (R550 + R768) | Prabhakar et al. (2013) [10] |
15 | Mealybug Stress Index-3 (MSI-3) | (R550 − R674)/(R550 + R674) | Prabhakar et al. (2013) [10] |
16 | Plant Pigment Ratio (PPR) | (R550-R450)/(R550 + R450) | Metternicht (2003) [34] |
17 | Aphid Stress Index 1(ASI-1) | (R666-R1462)/(R666 + R1462) | Present study |
18 | Aphid Stress Index 2(ASI-2) | (R1908/ R1964) | Present study |
Parameter | Spectral Region | ||||
---|---|---|---|---|---|
Blue (450–520 nm) | Green (521–600 nm) | Red (630–690 nm) | NIR (760–900 nm) | SWIR (1550–1750 nm) | |
Grade 0 | |||||
Mean reflectance values | 0.0778 ± 0.0098 | 0.1461 ± 0.0184 | 0.0862 ± 0.0105 | 0.5912 ± 0.0147 | 0.3235 ± 0.0052 |
Grade 1 | |||||
Mean reflectance values | 0.0765 ± 0.0160 | 0.1393 ± 0.0168 | 0.0811 ± 0.0132 | 0.5505 ± 0.0141 | 0.3200 ± 0.0171 |
Pr > |t| | <0.00001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Grade 2 | |||||
Mean reflectance values | 0.0620 ± 0.0097 | 0.1135 ± 0.0113 | 0.0648 ± 0.0078 | 0.5003 ± 0.0074 | 0.3020 ± 0.0126 |
Pr > |t| | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Grade 3 | |||||
Mean reflectance values | 0.0545 ± 0.0063 | 0.1020 ± 0.0134 | 0.0575 ± 0.0061 | 0.4556 ± 0.0107 | 0.2852 ± 0.0092 |
Pr > |t| | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Grade 4 | |||||
Mean reflectance values | 0.0503 ± 0.0004 | 0.0982 ± 0.0070 | 0.0526 ± 0.0033 | 0.4313 ± 0.0137 | 0.2712 ± 0.0009 |
Pr > |t| | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
Damage Severity | Chl a (μg/cm2) | Chl b (μg/cm2) | Chl a + b (μg/cm2) | RWC (%) |
---|---|---|---|---|
Grade 0 | 46.67 a | 14.00 a | 60.67 a | 79.49 a |
CV (%) | 3.27 | 7.14 | 0.95 | 1.06 |
Grade 1 | 40.00 b | 11.67 b | 51.67 b | 78.03 a |
CV (%) | 5.00 | 4.95 | 4.03 | 1.81 |
Grade 2 | 31.67 c | 8.67 c | 40.33 c | 70.89 b |
CV (%) | 4.82 | 6.66 | 2.86 | 1.24 |
Grade 3 | 24.00 d | 5.67 d | 29.67 d | 68.50 c |
CV (%) | 4.17 | 20.38 | 7.02 | 1.12 |
Grade 4 | 17.67 e | 3.33 e | 21.00 e | 63.31 d |
CV (%) | 6.53 | 45.83 | 12.59 | 1.58 |
LSD | ** | ** | ** | ** |
Spectral Vegetation Index | R2 | Slope | RMSE | |
---|---|---|---|---|
1 | Simple Ratio (SR) | 0.62 | 25.365 | 0.72 |
2 | Normalized Difference Vegetation Index (NDVI) | 0.07 | 8.69 | 1.12 |
3 | Disease Water Stress Index 2 (DWSI-2) | 0.43 | 3.1765 | 0.88 |
4 | Aphid index (AI) | 0.25 | −9.8368 | 1.00 |
5 | Damage sensitive Spectral Index-2 (DSSI 2) | 0.12 | 0.1429 | 1.09 |
6 | Chlorophyll Index (CI) | 0.16 | 17.321 | 1.06 |
7 | Chl Stress Index 1 (Chl SI-1) | 0.08 | 3.1007 | 1.11 |
8 | Chl Stress Index 2 (Chl SI-2) | 0.08 | 4.1117 | 1.16 |
9 | Chl Stress Index 3 (Chl SI-3) | 0.08 | −14.106 | 1.11 |
10 | Leaf Hopper Index (LHI) | 0.40 | 7.1082 | 0.89 |
11 | Nitrogen Stress Index 1 (NSI-1) | 0.02 | 3.2615 | 1.15 |
12 | Nitrogen Stress Index 2 (NSI-2) | 0.05 | −0.9661 | 1.13 |
13 | Mealybug Stress Index-1 (MSI-1) | 0.54 | −7.8639 | 0.78 |
14 | Mealybug Stress Index-2 (MSI-2) | 0.57 | −5.1301 | 0.76 |
15 | Mealybug Stress Index-3 (MSI-3) | 0.02 | 2.8806 | 1.15 |
16 | Plant Pigment Ratio (PPR) | 0.02 | −2.5944 | 1.15 |
17 | Aphid Stress Index 1 (ASI-1) | 0.81 | 10.993 | 0.50 |
18 | Aphid Stress Index 2 (ASI-2) | 0.80 | 25.987 | 0.51 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zeng, R.; Guo, W.; Hou, X.; Lan, Y.; Zhang, L. Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements. Sensors 2018, 18, 2798. https://doi.org/10.3390/s18092798
Chen T, Zeng R, Guo W, Hou X, Lan Y, Zhang L. Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements. Sensors. 2018; 18(9):2798. https://doi.org/10.3390/s18092798
Chicago/Turabian StyleChen, Tingting, Ruier Zeng, Wenxuan Guo, Xueying Hou, Yubin Lan, and Lei Zhang. 2018. "Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements" Sensors 18, no. 9: 2798. https://doi.org/10.3390/s18092798
APA StyleChen, T., Zeng, R., Guo, W., Hou, X., Lan, Y., & Zhang, L. (2018). Detection of Stress in Cotton (Gossypium hirsutum L.) Caused by Aphids Using Leaf Level Hyperspectral Measurements. Sensors, 18(9), 2798. https://doi.org/10.3390/s18092798