Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method
Abstract
:1. Introduction
2. Theoretical Development
3. The Focusing Schlieren Method Base on an Off-Axis Circular Illumination
4. Method to Measure Temperature in Fluid Flows
5. Experiment
6. Data Analysis
Temperature Data Analysis
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tropea, C.; Yarin, A.; Foss, J. Handbook of Experimental Fluid Mechanics; Springer: Berlin, Germany, 2007; ISBN 978-3-662-49162-1. [Google Scholar]
- Merzkirch, W. Flow Visualization, 2nd ed.; Academic Press: Orlando, FL, USA, 1987; ISBN 0124913512. [Google Scholar]
- Settles, G.S. Schlieren and Shadowgraph Techniques, 1st ed.; Springer: Berlin, Germany, 2001; ISBN 978-3-642-63034-7. [Google Scholar]
- Barnes, N.F.; Bellinger, S.L. Schlieren and shadowgraph equipment for air flow analysis. J. Opt. Soc. Am. 1945, 35, 497–509. [Google Scholar] [CrossRef]
- Burton, R.A. A modified schlieren apparatus for large areas of field. J. Opt. Soc. Am. 1949, 39, 907–908. [Google Scholar] [CrossRef] [PubMed]
- Decker, G.; Deutsch, R.; Kies, W.; Rybach, J. Computer-simulated Schlieren optics. Appl. Opt. 1985, 24, 823–828. [Google Scholar] [CrossRef]
- Korpel, A.; Yu, T.T.; Snyder, H.S.; Chen, Y.M. Diffraction-free nature of Schlieren sound-field images in isotropic media. J. Opt. Soc. Am. 1994, 11, 2657–2663. [Google Scholar] [CrossRef]
- Stanic, S. Quantitative Schlieren visualization. Appl. Opt. 1978, 17, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Peale, R.E.; Summers, P.L. Zebra schlieren optics for leak detection. Appl. Opt. 1996, 35, 4518–4521. [Google Scholar] [CrossRef]
- Agrawal, A.K.; Butuk, N.K.; Gollahalli, S.R.; Griffin, D. Three-dimensional rainbow Schlieren tomography of a temperature field in gas flows. Appl. Opt. 1998, 37, 479–485. [Google Scholar] [CrossRef]
- Tregub, V.P. A color Schlieren method. J. Opt. Technol. 2004, 71, 785–790. [Google Scholar] [CrossRef]
- Wong, T.; Agrawal, A.K. Quantitative measurements in an unsteady flame using high-speed rainbow schlieren deflectometry. Meas. Sci. Technol. 2006, 17, 1503–1510. [Google Scholar] [CrossRef]
- Popova, E.M. Processing Schlieren-background patterns by constructing the direction field. J. Opt. Technol. 2004, 71, 572–574. [Google Scholar] [CrossRef]
- Raffel, M.; Richard, H.; Meier, A.G.E.A. On the applicability of background oriented optical tomography for large scale aerodynamic investigations. Exp. Fluids 2000, 28, 477–481. [Google Scholar] [CrossRef]
- Garg, S.; Cattafesta, L.N., III. Quantitative schlieren measurements of coherent structures in a cavity shear layer. Exp. Fluids 2001, 30, 123–134. [Google Scholar] [CrossRef]
- Alvarez-Herrera, C.; Moreno-Hernández, D.; BarrientosGarcía, B.; Guerrero-Viramontes, J.A. Temperature measurement of air convection using a schlieren system. Opt. Laser Technol. 2009, 41, 233–240. [Google Scholar] [CrossRef]
- Dalziel, S.B.; Carr, M.; Sveen, J.K.; Davies, P.A. Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Meas. Sci. Technol. 2007, 18, 533–547. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, A.; Guerrero-Viramontes, J.A.; Hernández, D.M. Temperature and velocity measurement fields of fluids using a schlieren system. Appl. Opt. 2012, 51, 3519–3525. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, A.; Hernández, D.M.; Guerrero-Viramontes, J.A. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images. Appl. Opt. 2013, 52, 5562–5569. [Google Scholar] [CrossRef]
- Prevosto, L.; Artana, G.; Mancinelli, B.; Kelly, H. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch. J. Appl. Phys. 2010, 107. [Google Scholar] [CrossRef]
- Kaessinger, J.C.; Kors, K.C.; Lum, J.S.; Dillon, H.E.; Mayer, S.K. Utilizing Schlieren Imaging to Visualize Heat Transfer Studies. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar]
- Aleiferis, P.; Charalambides, A.; Hardalupas, Y.; Soulopoulos, N.; Taylor, A.M.K.P.; Urata, Y. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine. Appl. Opt. 2015, 54, 4566–4579. [Google Scholar] [CrossRef]
- Schardin, H. Schlieren methods and their applications. Ergebnisse der Exakten Naturwissenschaften 1942, 20, 303–439. [Google Scholar]
- Seitzman, J.M.; Hanson, R.K. Planar Fluorescence Imaging in Gases. In Instrumentation for Flows with Combustion; Taylor, A.M.K.P., Ed.; Academic Press: London, UK, 1993; pp. 405–466. ISBN 978-0-12-683920. [Google Scholar]
- Seitzman, J.M.; Kychakoff, G.; Hanson, R.K. Instantaneous temperature field measurements using planar laser-induced fluorescence. Opt. Lett. 1985, 10, 439–441. [Google Scholar] [CrossRef]
- Aldén, M.; Bood, J.; Li, Z.; Richter, M. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc. Combust. Inst. 2011, 33, 69–97. [Google Scholar] [CrossRef]
- Laurendeau, N.M. Temperature measurements by light-scattering methods. Prog. Energy Combust. Sci. 1988, 14, 147–170. [Google Scholar] [CrossRef]
- Omrane, A.; Petersson, P.; Aldén, M.; Linne, M.A. Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors. Appl. Phys. B 2008, 92, 99–102. [Google Scholar] [CrossRef]
- Burton, R.A. Notes on the multiple source Schlieren system. J. Opt. Soc. Am. 1951, 41, 858–859. [Google Scholar] [CrossRef]
- Fish, R.W.; Parham, K. Focusing Schlieren Systems; Report CP-54; British Aeronautical Research Council: London, UK, 1950. [Google Scholar]
- Kantrowitz, A.; Trimpi, R.L. A sharp-focusing Schlieren system. J. Aeronaut. Sci. 1950, 17, 311–314. [Google Scholar] [CrossRef]
- Weinstein, L. Review and update of lens and grid Schlieren and motion camera Schlieren. Eur. Phys. J. Spec. Top. 2010, 182, 65–95. [Google Scholar] [CrossRef]
- Weinstein, L.M. Large-field high-brightness focusing Schlieren system. AIAA J. 1993, 31, 1250–1255. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Wiley, A. Structured light-field focusing for flowfield diagnostics. Exp. Therm. Fluid Sci. 2017, 89, 110–118. [Google Scholar] [CrossRef]
- Kouchi, T.; Goyne, C.P.; Rockwell, R.D.; McDaniel, J.C. Focusing-Schlieren visualization in a dual-mode scramjet. Exp. Fluids 2015, 56, 211. [Google Scholar] [CrossRef]
- L’Esperance, D.; Buckner, B.D. Focusing Schlieren Systems Using Digitally Projected Grid. In Proceedings of the Applied Optical Metrology II, San Diego, CA, USA, 6–10 August 2017. [Google Scholar]
- Jiang, X.; Cheng, Q.; Xu, Z.; Qian, M.; Han, Q. Quantitative measurement of acoustic pressure in the focal zone of acoustic lens-line focusing using the Schlieren method. Appl. Opt. 2016, 55, 2478–2483. [Google Scholar] [CrossRef]
- Stavroudis, O.N. The Optics of Rays, Wavefronts and Caustics; Academic Press, Inc.: Cambridge, MA, USA, 1972. [Google Scholar]
- Goldstein, R.J.; Kuehn, T.H. Optical systems for flow measurement: Shadowgraph, Schlieren and interferometric techniques. In Fluid Mechanics Measurements; Goldstein, R.J., Ed.; Taylor & Francis: London, UK, 1996. [Google Scholar]
- Hecht, E. Optics; Addison-Wesely Publishing Co., Inc.: Boston, MA, USA, 2001. [Google Scholar]
Soldering Station at (200 °C) | Thermocouple (°C) | Focusing Schlieren (°C) | Relative Error (%) | Soldering Station at (400 °C) | Thermocouple (°C) | Focusing Schlieren (°C) | Relative Error (%) |
---|---|---|---|---|---|---|---|
TM1 | 178 | 176 | 1.0 | TM1 | 297 | 312 | 5.0 |
TM2 | 172 | 166 | 3.5 | TM2 | 330 | 346 | 4.8 |
TM3 | 174 | 171 | 1.7 | TM3 | 328 | 333 | 1.5 |
TM4 | 201 | 219 | 9.0 | TM4 | 330 | 356 | 5.7 |
TM5 | 212 | 215 | 1.4 | TM5 | 384 | 392 | 2.0 |
TM6 | 213 | 221 | 3.7 | TM6 | 372 | 370 | 0.5 |
TM7 | 170 | 178 | 4.7 | TM7 | 238 | 261 | 9.6 |
TM8 | 175 | 184 | 5.1 | TM8 | 249 | 283 | 13.6 |
TM9 | 181 | 186 | 2.7 | TM9 | 274 | 290 | 5.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-González, A.; Moreno-Hernández, D.; Guerrero-Viramontes, J.A.; León-Rodríguez, M.; Zamarripa-Ramírez, J.C.I.; Carrillo-Delgado, C. Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method. Sensors 2019, 19, 12. https://doi.org/10.3390/s19010012
Martínez-González A, Moreno-Hernández D, Guerrero-Viramontes JA, León-Rodríguez M, Zamarripa-Ramírez JCI, Carrillo-Delgado C. Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method. Sensors. 2019; 19(1):12. https://doi.org/10.3390/s19010012
Chicago/Turabian StyleMartínez-González, A., D. Moreno-Hernández, J. A. Guerrero-Viramontes, M. León-Rodríguez, J. C. I. Zamarripa-Ramírez, and C. Carrillo-Delgado. 2019. "Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method" Sensors 19, no. 1: 12. https://doi.org/10.3390/s19010012
APA StyleMartínez-González, A., Moreno-Hernández, D., Guerrero-Viramontes, J. A., León-Rodríguez, M., Zamarripa-Ramírez, J. C. I., & Carrillo-Delgado, C. (2019). Temperature Measurement of Fluid Flows by Using a Focusing Schlieren Method. Sensors, 19(1), 12. https://doi.org/10.3390/s19010012