Self-Assembly of Functional Nucleic Acid-Based Colorimetric Competition Assay for the Detection of Immunoglobulin E
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Sample Preparation
2.3. Immobilization of Biotinylated FNAs on Microplate
2.4. Procedure for Protein Detection
2.5. Data Analysis
3. Results and Discussion
3.1. Optimization of Immobilized Streptavidin and FNAs Conditions
3.2. Optimization of the Catalytic System
3.3. Specificity and Sensitivity
3.4. Real Sample Analysis and Recovery
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. Trac-Trend Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Liang, Q.-N.; Chen, P.-Q.; Liu, T.-C.; Zhou, J.-W.; Chen, J.-J.; Wu, Y.-S. Development of a time-resolved fluoroimmunoassay for Epstein-Barr virus viral capsid antigen IgA antibody in human serum. J. Virol. Methods 2015, 222, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Li, J.; Mou, L.; Liu, Y.; Deng, J.; Qian, W.; Sun, J.; Cha, R.; Jiang, X. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Lab Chip 2017, 17, 2225–2234. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, Y.; Qu, B.; Kong, H.; Qin, G.; Liu, S.; Cheng, J.; Wang, Q.; Zhao, Y. Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens. Bioelectron. 2016, 81, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.G.; Blackburn, J.M. Advances in the development of human protein microarrays. Expert Rev. Proteomic. 2017, 14, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, Z.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998. [Google Scholar] [CrossRef] [PubMed]
- Song, T.-T.; Wang, W.; Meng, L.-L.; Liu, Y.; Jia, X.-B.; Mao, X. SNAP-tag fluorogenic probes for wash free protein labeling. Chinese Chem. Lett. 2017, 28, 226–230. [Google Scholar] [CrossRef]
- Pineiro, M.; Pato, R.; Soler, L.; Pena, R.; Garcia, N.; Torrente, C.; Saco, Y.; Lampreave, F.; Bassols, A.; Canalias, F. A new automated turbidimetric immunoassay for the measurement of canine C-reactive protein. Vet. Clin. Path. 2018, 47, 130–137. [Google Scholar] [CrossRef]
- Wang, Y.; Gan, N.; Zhou, Y.; Li, T.; Hu, F.; Cao, Y.; Chen, Y. Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification. Biosens. Bioelectron. 2017, 97, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Zeng, H. Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein. Anal. Chem. 2017, 89, 12743–12748. [Google Scholar] [CrossRef]
- Hu, B.; Guo, J.; Xu, Y.; Wei, H.; Zhao, G.; Guan, Y. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology. Anal. Bioanal. Chem. 2017, 409, 4819–4825. [Google Scholar] [CrossRef]
- Lin, X.; Leung, K.-H.; Lin, L.; Lin, L.; Lin, S.; Leung, C.-H.; Ma, D.-L.; Lin, J.-M. Determination of cell metabolite VEGF(165) and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens. Bioelectron. 2016, 79, 41–47. [Google Scholar] [CrossRef]
- Fraser, L.A.; Kinghorn, A.B.; Dirkzwager, R.M.; Liang, S.; Cheung, Y.-W.; Lim, B.; Shiu, S.C.-C.; Tang, M.S.L.; Andrew, D.; Manitta, J.; et al. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens. Bioelectron. 2018, 100, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, Y.; Song, C.; Tian, G.; Li, S.; Yang, G.; Lv, C. Novel and label-free colorimetric detection of radon using AuNPs and lead(II)-induced GR5 DNAzyme-based amplification strategy. Anal. Bioanal. Chem. 2018, 410, 4227–4234. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, G.P.; Correa, C.C.; Kubota, L.T. A simple, sensitive and reduced cost paper-based device with low quantity of chemicals for the early diagnosis of Plasmodium falciparum malaria using an enzyme-based colorimetric assay. Sensor. Actuat. B-Chem. 2018, 255, 2113–2120. [Google Scholar] [CrossRef]
- Wang, M.; Yue, D.; Qiao, Q.; Miao, L.; Zhao, H.; Xu, Z. Aptamer based fluorescent probe for serum HER2-ECD detection: The clinical utility in breast cancer. Chinese Chem. Lett. 2018, 29, 703–706. [Google Scholar] [CrossRef]
- Mackay, D.K.J.; Bulut, A.N.; Rendle, T.; Davidson, F.; Ferris, N.P.; Virol, J. A solid-phase competition ELISA for measuring antibody to foot-and-mouth disease virus. Methods 2001, 97, 33–48. [Google Scholar] [CrossRef]
- Mishra, R.K.; Hayat, A.; Mishra, G.K.; Catanante, G.; Sharma, V.; Marty, J.-L. A novel colorimetric competitive aptamer assay for lysozyme detection based on superparamagnetic nanobeads. Talanta 2017, 165, 436–441. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Fang, M.; Xia, N.; Zhao, Q.; Virol, J. Detection of subtle differences in analogous viral capsid proteins by allowing unrestricted specific interaction in solution competition ELISA. Methods 2016, 236, 1–4. [Google Scholar] [CrossRef]
- Wang, J.; Mao, S.; Li, H.-F.; Lin, J.-M. Multi-DNAzymes-functionalized gold nanoparticles for ultrasensitive chemiluminescence detection of thrombin on microchip. Anal. Chim. Acta 2018, 1027, 76–82. [Google Scholar] [CrossRef]
- Wang, N.; Kong, D.-M.; Shen, H.-X. Amplification of G-quadruplex DNAzymes using PCR-like temperature cycles for specific nucleic acid and single nucleotide polymorphism detection. Chem. Commun. 2011, 47, 1728–1730. [Google Scholar] [CrossRef]
- Kosman, J.; Juskowiak, B. Optimization study of the catalytic activity of DNAzymes based on telomeric G-quadruplsxes. Cent. Eur. J. Chem. 2012, 10, 368–372. [Google Scholar]
- Wu, Z.-S.; Zheng, F.; Shen, G.-L.; Yu, R.-Q. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins. Biomaterials 2009, 30, 2950–2995. [Google Scholar] [CrossRef]
- Gokulrangan, G.; Unruh, J.R.; Holub, D.F.; Ingram, B.; Johnson, C.K.; Wilson, G.S. DNA Aptame-Based bioanalysis of IgE by Fluorescence Anisotropy. Anal. Chem. 2005, 77, 1963–1970. [Google Scholar] [CrossRef]
- Nimse, S.B.; Song, K.; Sonawane, M.D.; Sayyed, D.R.; Kim, T. Immobilization Techniques for Microarray: Challenges and Applications. Sensors 2014, 14, 22208–22229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabanayagam, C.R.; Smith, C.L.; Cantor, C.R. Oligonucleotide immobilization on micropatterned streptavidin surfaces. Nucleic Acids Res. 2000, 28, e33. [Google Scholar] [CrossRef]
- Jiang, P.; He, M.; Shen, L.; Shi, A.; Liu, Z. A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensor. Actuat. B-Chem. 2017, 239, 319–324. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Niu, Q.; Li, H.; Vuki, M.; Xu, D. Visual microarray detection for human IgE based on silver nanoparticles. Sensor. Actuat. B-Chem. 2017, 239, 45–51. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Liu, Y. Petal-like CdS nanospheres-based electrochemiluminescence aptasensor for detection of IgE with gold nanoparticles amplification. Spectrochim. Acta A 2015, 151, 274–279. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Cao, J.-T.; Liu, Y.-Y.; Zhang, J.-J.; Zhou, M.; Huang, K.-J.; Chen, Y.-H.; Ren, S.-W. Aptamer-based detection and quantitative analysis of human immunoglobulin E in capillary electrophoresis with chemiluminescence detection. Electrophoresis 2015, 36, 2413–2418. [Google Scholar] [CrossRef]
- Jiang, B.; Li, F.; Yang, C.; Xie, J.; Xiang, Y.; Yuan, R. Aptamer Pseudoknot-Functionalized Electronic Sensor for Reagent less and Single-Step Detection of Immunoglobulin E in Human Serum. Anal. Chem. 2015, 87, 3094–3098. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Chen, C.-Y.; Zhao, X.; Wu, T.-H.; Wei, S.-C.; Lin, C.-W. Label-free colorimetric aptasensor for IgE using DNA pseudoknot probe. Analyst 2014, 139, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, Y.; Olsen, T.R.; Sun, N.; Zhang, W.; Pei, R.; Lin, Q. A graphene aptasensor for biomarker detection in human serum. Electrochim. Acta. 2018, 290, 356–363. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, M.; Jiao, M.; Luo, X. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Anal. Bioanal. Chem. 2018, 410, 5871–5878. [Google Scholar] [CrossRef] [PubMed]
- Salimi, A.; Khezrian, S.; Hallaj, R.; Vaziry, A. Highly sensitive electrochemical aptasensor for immunoglobulin E detection based on sandwich assay using enzyme-linked aptamer. Anal. Biochem. 2014, 466, 89–97. [Google Scholar] [CrossRef] [PubMed]
Assay | Indicator or Amplication | Linearity Range | LOD | Ref. |
---|---|---|---|---|
Luminescence | carbon nanoparticles | 0.5 ng/mL to 80 ng/mL | 0.2 ng/mL | [27] |
Microplate array | silver nanoparticles | 20 ng/mL to 320 ng/mL | 20 ng/mL | [28] |
Electrochemiluminescence | Aptamer-based | 9.75 ng/mL to 585 ng/mL | 1.56 ng/mL | [29] |
Chemiluminescence | Aptamer-based | 4.8 pg/mL to 48.79 ng/mL | 1.48 pg/mL | [30] |
Electrochemical | Aptamer-based | 19.4 ng/mL to 19.4 × 103 ng/mL | 11.7 ng/mL | [31] |
Colorimetric | Aptamer-based and | 1.94 × 102 ng/mL to 4.85×103 ng/mL | 0.2 nM | [32] |
Field effect transistor | gold nanoparticles graphene | 9.94 ng/mL to 48.7 ng/mL | 9.16 ng/mL | [33] |
Electrochemical | aptamer and peptide | 0.1 pg/mL to 10 pg/mL | 8.19 fg/mL | [34] |
Sandwich assay | Enzyme-linked aptamer | 0 ng/mL to 3.92 × 10 ng/mL | 1.17 ng/mL | [35] |
No. | Average Conc. (pg/mL) (n = 3) | Conc. (pg/mL) | SD (pg/mL) | CV (%) | Recovery (%) 50 pg/mL IgE |
---|---|---|---|---|---|
1 | N/A | N/A | N/A | 9.02 | 93.3 |
2 | 41 | 12~70 | 3 | 3.09 | 97.6 |
3 | N/A | N/A | N/A | 6.40 | 96.8 |
4 | 620 | 430~672 | 160 | 3.38 | 97.2 |
5 | N/A | N/A | N/A | 3.74 | 95.4 |
6 | N/A | N/A | N/A | 3.14 | 96.6 |
7 | N/A | N/A | N/A | 2.86 | 94.4 |
8 | N/A | N/A | N/A | 4.13 | 94.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Yu, C.; Lin, H.; Wang, C.; Su, J.; Cheng, J.; Kankala, R.K.; Zhou, S.-F. Self-Assembly of Functional Nucleic Acid-Based Colorimetric Competition Assay for the Detection of Immunoglobulin E. Sensors 2019, 19, 2224. https://doi.org/10.3390/s19102224
Lin X, Yu C, Lin H, Wang C, Su J, Cheng J, Kankala RK, Zhou S-F. Self-Assembly of Functional Nucleic Acid-Based Colorimetric Competition Assay for the Detection of Immunoglobulin E. Sensors. 2019; 19(10):2224. https://doi.org/10.3390/s19102224
Chicago/Turabian StyleLin, Xuexia, Caiyun Yu, Honggui Lin, Cui Wang, Jianlong Su, Jie Cheng, Ranjith Kumar Kankala, and Shu-Feng Zhou. 2019. "Self-Assembly of Functional Nucleic Acid-Based Colorimetric Competition Assay for the Detection of Immunoglobulin E" Sensors 19, no. 10: 2224. https://doi.org/10.3390/s19102224
APA StyleLin, X., Yu, C., Lin, H., Wang, C., Su, J., Cheng, J., Kankala, R. K., & Zhou, S. -F. (2019). Self-Assembly of Functional Nucleic Acid-Based Colorimetric Competition Assay for the Detection of Immunoglobulin E. Sensors, 19(10), 2224. https://doi.org/10.3390/s19102224