3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Co-existing Hydroquinone and Catechol
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Preparation of the CuS-CNF/GCE
2.3. Apparatus and Characterization
3. Results and Discussion
3.1. Characterization of the CuS-CNF Nanomaterials
3.2. Electrochemical Performances of the CuS-CNF/GCE
3.3. Electrochemical Detection of HQ and CC
3.4. Interferences and Application of CuS-CNF/GCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Khodaei, M.M.; Alizadeh, A.; Pakravan, N. Polyfunctional tetrazolic thioethers through electrooxidative/Michael-type sequential reactions of 1,2- and 1,4-dihydroxybenzenes with 1-phenyl-5-mercaptotetrazole. J. Org. Chem. 2008, 73, 2527–2532. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Qiu, W.; Huang, Z. Solid-phase microextraction using fused-silica fibers coated with sol-gel-derived hydroxy-crown ether. Anal. Chem. 2001, 73, 2429–2436. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, K.; Oikawa, S.; Hiraku, Y.; Hirosawa, I.; Kawanishi. Catechol and hydroquinone have different redox properties responsible for their differential DNA-damaging ability. S. Chem. Res. Toxicol. 2002, 15, 76–82. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, J.; Lin, Z.; Zhong, L.; Shi, J.; Wei, C.; Zhang, H.; Hao, A.; Hu, S. Highly sensitive simultaneous electrochemical determination of hydroquinone, catechol and resorcinol based on carbon dot/reduced graphene oxide composite modified electrodes. Anal. Methods 2015, 7, 6089–6094. [Google Scholar] [CrossRef]
- Buleandra, M.; Rabinca, A.A.; Mihailciuc, C.; Balan, A.; Nichita, C.; Stamatin, I.; Ciucu, A.A. Screen-printed prussian blue modified electrode for simultaneous detection of hydroquinone and catechol. Sensor. Actuat. B-Chem. 2014, 203, 824–832. [Google Scholar] [CrossRef]
- Quan, Y.; Xue, Z.; Shi, H.; Zhou, X.; Du, J.; Liu, X.; Lu, X. A high-performance and simple method for rapid and simultaneous determination of dihydroxybenzene isomers. Analyst 2012, 137, 944–952. [Google Scholar] [CrossRef]
- Li, J.; Xia, J.; Zhang, F.; Wang, Z.; Liu, Q. An electrochemical sensor based on copper-based metal-organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water. Talanta 2018, 181, 80–86. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Q.; Meng, Y.; Jin, Z.; Fang, Z.; Fu, Q.; Gao, W.; Xu, L.; Song, Y.; Lu, F. Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J. Hazard. Mater 2018, 353, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, P.; Vasantha, R.A.; Sunitha, K.R. A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. Talanta 2001, 55, 1039–1046. [Google Scholar] [CrossRef]
- Pistonesi, M.F.; Di Nezio, M.S.; Centurión, M.E.; Palomeque, M.E.; Lista, A.G.; Fernández Band, B.S. Determination of phenol, resorcinol and hydroquinone in air samples by synchronous fluorescence using partial least-squares (PLS). Talanta 2006, 69, 1265. [Google Scholar] [CrossRef]
- Ramaraj, S.; Mani, S.; Chen, S.M.; Kokulnathan, T.; Lou, B.S.; Ali, M.A.; Hatamleh, A.A.; Al-Hemaid, F.M.A. Synthesis and application of bismuth ferrite nanosheets supported functionalized carbon nanofiber for enhanced electrochemical detection of toxic organic compound in water samples. J. Colloid Interface Sci. 2018, 514, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, S.; Li, S.; Qu, J. Simultaneous determination of hydroquinone and catechol using a glassy carbon electrode modified with Au@Pd loaded on reduced graphene oxide. Anal. Methods 2018, 10, 1331–1338. [Google Scholar] [CrossRef]
- Deng, M.; Lin, S.; Bo, X.; Guo, L. Simultaneous and sensitive electrochemical detection of dihydroxybenzene isomers with UiO-66 metal-organic framework/mesoporous carbon. Talanta 2017, 174, 527–538. [Google Scholar] [CrossRef]
- Huang, Y.H.; Chen, J.H.; Sun, X.; Su, Z.B.; Xing, H.T.; Hu, S.R.; Weng, W.; Guo, H.X.; Wu, W.B.; He, Y.S. One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sens. Actuat. B Chem. 2015, 212, 165–173. [Google Scholar] [CrossRef]
- He, J.; Qiu, F.; Xu, Q.; An, J.; Qiu, R. A carbon nanofibers-Sm2O3 nanocomposite: a novel electrochemical platform for simultaneously detecting two isomers of dihydroxybenzene. Anal. Methods 2018, 10, 1852–1862. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, J.; Yue, S.; Zhang, L.; Wang, Z.; Guo, P.; Liu, Q. Nickel oxide/carbon nanotube nanocomposites prepared by atomic layer deposition for electrochemical sensing of hydroquinone and catechol. J. Electroanal. Chem. 2018, 808, 245–251. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Z.; Zhu, X.; Zeng, R.; Tie, S.; Nan, J. Electrochemical behavior and simultaneous determination of catechol, resorcinol, and hydroquinone using thermally reduced carbon nano-fragment modified glassy carbon electrode. Anal. Methods 2016, 8, 605–613. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Mao, H.; You, T. Multifunctional solid-state electrochemiluminescence sensing platform based on poly(ethylenimine) capped N-doped carbon dots as novel co-reactant. Biosens. Bioelectron. 2017, 89, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, S.; Deng, W.; Zhang, Y.; Tan, Y.; Xie, Q.; Ma, M. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol. Talanta 2017, 164, 300–306. [Google Scholar] [CrossRef]
- Velmurugan, M.; Karikalan, N.; Chen, S.M.; Cheng, Y.H.; Karuppiah, C. Electrochemical preparation of activated graphene oxide for the simultaneous determination of hydroquinone and catechol. J. Colloid Interface Sci. 2017, 500, 54–62. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, L.; Zhu, X.; Yu, C.; Zuo, X.; Xiao, X.; Nan, J. Electrocatalytic oxidation and simultaneous determination of catechol and hydroquinone at a novel carbon nano-fragment modified glassy carbon electrode. Anal. Methods 2013, 5, 2203–2208. [Google Scholar] [CrossRef]
- Alshahrani, L.A.; Liu, L.; Sathishkumar, P.; Nan, J.; Gu, F.L. Copper oxide and carbon nano-fragments modified glassy carbon electrode as selective electrochemical sensor for simultaneous determination of catechol and hydroquinone in real-life water samples. J. Electroanal. Chem. 2018, 815, 68–75. [Google Scholar] [CrossRef]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Hydrothermal growth of CuS nanowires from Cu−Dithiooxamide, a novel single-source precursor. Cryst. Growth Des. 2006, 6, 1921–1926. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Lei, H.; Qin, P.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X. An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells. J. Power Sources 2014, 248, 809–815. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Gu, A.; Wei, Y.; Fang, B. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chem. Commun. 2008, 45, 5945–5947. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.; Jiao, Q.; Zhu, X.; Zhang, C.; Xiao, X.; Nan, J. Preparation, characterization and electrochemical properties of a graphene-like carbon nano-fragment material. Electrochim. Acta 2014, 130, 156–163. [Google Scholar] [CrossRef]
- Kundu, J.; Pradhan, D. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies. ACS Appl. Mater. Interfaces 2014, 6, 1823–1834. [Google Scholar] [CrossRef]
- Venkadesh, A.; Radhakrishnan, S.; Mathiyarasu, J. Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures. Electrochim. Acta 2017, 246, 544–552. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Z.; Xu, L.; Li, S.; Jiao, Y.; Zhang, H.; Chen, M. Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties. Chin. Phys. B 2017, 26, 076102. [Google Scholar] [CrossRef]
- Cabrera-German, D.; García-Valenzuela, J.A.; Martínez-Gil, M.; Suárez-Campos, G.; Montiel-González, Z.; Sotelo-Lerma, M.; Cota-Leal, M. Assessing the chemical state of chemically deposited copper sulfide: A quantitative analysis of the X-ray photoelectron spectra of the amorphous-to-covellite transition phases. Appl. Surf. Sci. 2019, 481, 281–295. [Google Scholar] [CrossRef]
- Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K.A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583. [Google Scholar] [CrossRef]
- Sun, D.; Ban, R.; Zhang, P.H.; Wu, G.H.; Zhang, J.R.; Zhu, J.J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424–434. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Zhang, S.; Yang, L.; Liu, M.; Zhang, Y.; Yao, S. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim. Acta 2017, 231, 677–685. [Google Scholar] [CrossRef]
- Wei, C.; Huang, Q.; Hu, S.; Zhang, H.; Zhang, W.; Wang, Z.; Zhu, M.; Dai, P.; Huang, L. Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multiwalledcarbon nanotubes modified glassy carbon electrode. Electrochim. Acta 2014, 149, 237–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, R.; Luo, B.; Wang, L. Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol. Electrochim. Acta 2015, 156, 228–234. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, T.; Hu, X.; Wang, Y.; Wang, J. Amperometric determination of hydroquinone and catechol using a glassy carbon electrode modified with a porous carbon material doped with an iron species. Microchim. Acta 2018, 185, 37. [Google Scholar] [CrossRef] [PubMed]
- Goulart, L.A.; Mascaro, L.H. GC electrode modified with carbon nanotubes and NiO for the simultaneous determination of bisphenol A, hydroquinone and catechol. Electrochim. Acta 2013, 196, 48–55. [Google Scholar] [CrossRef]
- Gan, T.; Sun, J.Y.; Huang, K.J.; Song, L.; Li, Y.M. A graphene oxide-mesoporous MnO2 nanocomposite modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of hydroquinone and catechol. Sens. Actuat. B Chem. 2013, 177, 412–418. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Z.; Zhu, X.; Alshahrani, L.A.; Tie, S.; Nan, J. A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone. Microchim. Acta 2016, 183, 3293–3301. [Google Scholar] [CrossRef]
Metal Doped Carbon Materials Modified GCE | Linear range (µM) | LOD (µM) | References | ||
---|---|---|---|---|---|
HQ | CC | HQ | CC | ||
Boron doped graphene | 5–100 | 5–200 | 0.3 | 0.2 | [36] |
Fe/PC | 0.1–120 | 1–120 | 0.014 | 0.033 | [37] |
NiO/CNT | 10–500 | 10–400 | 2.5 | 2.5 | [16] |
NiO/MWCNT | 7.4–56 | 7.4–56 | 0.039 | 0.015 | [38] |
GO-MnO2 | 0.01–0.7 | 0.03–1 | 0.007 | 0.01 | [39] |
CuO-CNF | 3–80 | 0–150 | 1 | 2 | [22] |
Bi-CNF | - | 3–20 | - | 0.2 | [40] |
CuS-CNF | 3-200 | 7–150 | 0.293 | 0.259 | This work |
S. No. | Add (µM) | Found (µM) | Recovery (%) | |||
---|---|---|---|---|---|---|
HQ | CC | HQ | CC | HQ | CC | |
1 | 50 | 50 | 49.7 | 51.7 | 99.4 | 103.4 |
2 | 100 | 100 | 103.8 | 101.5 | 103.8 | 101.5 |
3 | 150 | 150 | 153.1 | 152 | 102.1 | 101.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshahrani, L.A.; Miao, L.; Zhang, Y.; Cheng, S.; Sathishkumar, P.; Saravanakumar, B.; Nan, J.; Gu, F.L. 3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Co-existing Hydroquinone and Catechol. Sensors 2019, 19, 2289. https://doi.org/10.3390/s19102289
Alshahrani LA, Miao L, Zhang Y, Cheng S, Sathishkumar P, Saravanakumar B, Nan J, Gu FL. 3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Co-existing Hydroquinone and Catechol. Sensors. 2019; 19(10):2289. https://doi.org/10.3390/s19102289
Chicago/Turabian StyleAlshahrani, Lina Abdullah, Liqiong Miao, Yanyu Zhang, Shengming Cheng, Palanivel Sathishkumar, Balasubramaniam Saravanakumar, Junmin Nan, and Feng Long Gu. 2019. "3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Co-existing Hydroquinone and Catechol" Sensors 19, no. 10: 2289. https://doi.org/10.3390/s19102289
APA StyleAlshahrani, L. A., Miao, L., Zhang, Y., Cheng, S., Sathishkumar, P., Saravanakumar, B., Nan, J., & Gu, F. L. (2019). 3D-Flower-Like Copper Sulfide Nanoflake-Decorated Carbon Nanofragments-Modified Glassy Carbon Electrodes for Simultaneous Electrocatalytic Sensing of Co-existing Hydroquinone and Catechol. Sensors, 19(10), 2289. https://doi.org/10.3390/s19102289