Tapered Optical Fibre Sensors: Current Trends and Future Perspectives
Abstract
:1. Introduction
Fabrication of Tapered Optical Fibres
2. Tapered Optical Fibre Sensors
2.1. Evanescent Wave Spectroscopy
2.2. Radiation Losses and Scattering
2.3. Modal Interferometry
2.4. Gratings in Tapered Optical Fibres
2.5. Surface Plasmon Resonance
3. Applications of Tapered Optical Fibre Sensors
3.1. Refractometry—Single Taper Devices
3.2. Grating Assisted Taper Devices
3.3. Refractometry—Multi-Taper Devices
3.4. Bio-Chemical Sensors
3.4.1. Evanescent Wave Spectroscopy
3.4.2. Fluorescent Sensors
3.4.3. Particle Detection
3.5. Coated Tapered Devices
3.5.1. Surface Plasmon Resonance (SPR)
3.5.2. Functional Coatings
3.6. Physical Sensors
3.6.1. Strain, Stress and Pressure
3.6.2. Temperature
3.6.3. Simultaneous Measurements of Two or More Parameters
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Morris, G.; Saunders, P. The Environment in Health Well-Being; Oxford University Press: Oxford, UK, 2017; Volume 1. [Google Scholar]
- Newton, J. Wellbeing and the Natural Environment: A Brief Overview of the Evidence; University of Bath: Bath, UK, 2007; pp. 1–53. [Google Scholar]
- Joe, H.; Yun, H.; Jo, S.; Jun, M.B.G.; Min, B. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Grattan, K.; Meggitt, B.M. Chemical Environmental Sensing; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Mehrvar, M.; Bis, C.; Scharer, J.M.; Young, M.M.; Luong, J.H. Fiber-Optic Biosensors—Trends and Advances. Anal. Sci. 2000, 16, 677–692. [Google Scholar] [CrossRef]
- Seitz, W.R. Chemical Sensors Based on Fiber Optics. Anal. Chem. 1984, 56, 16A–34A. [Google Scholar] [CrossRef]
- Arnold, M.A. Fiber-Optic Chemical Sensors. Anal. Chem. 1992, 64, 1015A–1025A. [Google Scholar] [CrossRef]
- Jarzebinska, R.; Cheung, C.S.; James, S.W.; Tatam, R.P. Response of the transmission spectrum of tapered optical fibres to the deposition of a nanostructured coating. Meas. Sci. Technol. 2009, 20, 034001. [Google Scholar] [CrossRef]
- Jarzebinska, R.; Korposh, S.; James, S.; Batty, W.; Tatam, R.; Lee, S.-W. Optical Gas Sensor Fabrication Based on Porphyrin-Anchored Electrostatic Self-Assembly onto Tapered Optical Fibers. Anal. Lett. 2012, 45. [Google Scholar] [CrossRef]
- Stewart, W.J.; Love, J.D. Design limitations on tapers and couplers in single mode fibres. In Proceedings of the 5th International Conference on Integrated Optics and Optical Fiber Communication-11th European Conference Optics Communication (IOOC/ECOC’85), London, UK, 1–4 October 1985; pp. 559–562. [Google Scholar]
- Latifi, H.; Zibaii, M.I.; Hosseini, S.M.; Jorge, P. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sens. 2010, 2, 340–356. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, P.; Chen, L.; Bao, X. Recent Developments in Micro-Structured Fiber Optic Sensors. Fibers 2017, 5, 3. [Google Scholar] [CrossRef]
- MacKenzie, H.S.; Payne, F.P. Evanescent field amplification in a tapered single-mode optical fibre. Electron. Lett. 1990, 26, 130. [Google Scholar] [CrossRef]
- Massaro, A.; Pierantoni, L.; Rozzi, T. Far-field radiation of optical fibers with tapered end. J. Lightwave Technol. 2006, 24, 3162–3168. [Google Scholar] [CrossRef]
- Valaskovic, G.A.; Holton, M.; Morrison, G.H. Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 1995, 34, 1215. [Google Scholar] [CrossRef]
- Mullaney, K.; Tatam, R.P.; Staines, S.E.; James, S.W.; Correia, R. Monitoring techniques for the manufacture of tapered optical fibers. Appl. Opt. 2015, 54, 8531. [Google Scholar] [CrossRef] [PubMed]
- Rego, G. Fibre optic devices produced by arc discharges. J. Opt. 2010, 113002. [Google Scholar] [CrossRef]
- Zhang, Y.; Dhawan, A.; Vo-dinh, T. Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing. Nanoscale Res. Lett. 2011, 6, 18. [Google Scholar] [CrossRef]
- Harun, S.W.; Lim, K.S.; Tio, C.K.; Dimyati, K.; Ahmad, H. Optik Theoretical analysis and fabrication of tapered fiber. Opt. Int. J. Light Electron. Opt. 2013, 124, 538–543. [Google Scholar] [CrossRef]
- Moar, P.N.; Huntington, S.T.; Katsifolis, J.; Cahill, L.W.; Roberts, A.; Nugent, K.A. Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors. J. Appl. Phys. 1999, 85, 3395–3398. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, W.; Geng, P.; Xue, X.; Zhang, H.; Bai, Z. Highly Sensitive In-Fiber Refractive Index Sensor Based on Down-Bitaper Seeded Up-Bitaper Pair. IEEE Photonics Technol. Lett. 2012, 24, 1878–1881. [Google Scholar] [CrossRef]
- Leung, A.; Rijal, K.; Shankar, P.M.; Mutharasan, R. Effects of geometry on transmission and sensing potential of tapered fiber sensors. Biosens. Bioelectron. 2006, 21, 2202–2209. [Google Scholar] [CrossRef]
- Singh, C.; Shibata, Y.; Ogita, M. A theoretical study of tapered, porous clad optical fibers for detection of gases. Sens. Actuators B Chem. 2003, 92, 44–48. [Google Scholar] [CrossRef]
- Birks, T.A.; Li, Y.W. The shape of fiber tapers. J. Lightwave Technol. 1992, 10, 432–438. [Google Scholar] [CrossRef]
- Xue, S.; van Eijkelenborg, M.A.; Barton, G.W.; Hambley, P. Theoretical, Numerical, and Experimental Analysis of Optical Fiber Tapering. J. Lightwave Technol. 2007, 25, 1169–1176. [Google Scholar] [CrossRef]
- Dimmick, T.E.; Kakarantzas, G.; Birks, T.A.; Russell, P.S.J. Carbon dioxide laser fabrication of fused-fiber couplers and tapers. Appl. Opt. 1999, 38, 6845–6848. [Google Scholar] [CrossRef]
- Korposh, S.; Okuda, H.; Wang, T.; James, S.W.; Lee, S.-W. U-shaped evanescent wave optical fibre sensor based on a porphyrin anchored nanoassembled thin film for high sensitivity ammonia detection. In Proceedings of the Fifth Asia-Pacific Optical Sensors Conference, Paphos, Cyprus, 16–19 March 2015; Volume 9655. [Google Scholar]
- Razak, M.Z.A.; Reduan, S.A.; Sharbirin, A.S.; Jamaludin, N.; Zulkifli, M.Z.; Ahmad, H. Noncontact Optical Displacement Sensor Using an Adiabatic U-Shaped Tapered Fiber. IEEE Sens. J. 2015, 15, 5388–5392. [Google Scholar] [CrossRef]
- Kim, H.J.; Kown, O.J.; Lee, S.B.; Han, Y.G. Measurement of temperature and refractive index based on surface long-period gratings deposited onto a D-shaped photonic crystal fiber. Appl. Phys. B Lasers Opt. 2011, 102, 81–85. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y.; Chen, C.; Xue, Y.; Zhang, X.; Guo, J.; Sun, H.-B. S-Tapered Fiber Sensors for Highly Sensitive Measurement of Refractive Index and Axial Strain. J. Lightwave Technol. 2012, 30, 3126–3132. [Google Scholar] [CrossRef]
- Edwards, P.S.; Janisch, C.T.; He, L.; Zhu, J.; Yang, L.; Liu, Z. Fiber taper based Raman spectroscopic sensing. In Proceedings of the IEEE Photonics Conference, Burlingame, CA, USA, 23–27 September 2012; Volume 2, pp. 501–502. [Google Scholar] [CrossRef]
- Brambilla, G. Optical Fiber Technology Optical fibre nanotaper sensors. Opt. Fiber Technol. 2010, 16, 331–342. [Google Scholar] [CrossRef]
- Lee, B.; Roh, S.; Park, J. Optical Fiber Technology Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 2009, 15, 209–221. [Google Scholar] [CrossRef]
- Leung, A.; Shankar, P.M.; Mutharasan, R. A review of fiber-optic biosensors. Sens. Actuators B Chem. 2007, 125, 688–703. [Google Scholar] [CrossRef]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Kieu, K.Q.; Mansuripur, M. Biconical Fiber Taper Sensors. IEEE Photonics Technol. Lett. 2006, 18, 2239–2241. [Google Scholar] [CrossRef]
- Correia, R.; James, S.; Lee, S.-W.; Morgan, S.P.; Korposh, S.; Lee, S.-W.; Korposh, S. Biomedical application of optical fibre sensors. J. Opt. 2018, 20, 073003. [Google Scholar] [CrossRef]
- Chong, S.S.; Abdul Raman, A.A.; Harun, S.W.; Arof, H. Dual Output Approach in Dye Concentrations Determination Using Non-Adiabatic Tapered Fiber. IEEE Sens. J. 2015, 15, 3903–3908. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar] [CrossRef]
- Socorro, A.B.; Del Villar, I.; Corres, J.M.; Matias, I.R.; Arregui, F.J. Lossy mode resonances dependence on the geometry of a tapered monomode optical fiber. Sens. Actuators A Phys. 2012, 180, 25–31. [Google Scholar] [CrossRef]
- Jiang, X.; Jha, A. Sensors and Actuators B: Chemical Engineering of a Ge-Te-Se glass fibre evanescent wave spectroscopic (FEWS) mid-IR chemical sensor for the analysis of food and pharmaceutical products. Sens. Actuators B. Chem. 2015, 206, 159–169. [Google Scholar] [CrossRef]
- Korposh, S.; Kodaira, S.; Batty, W.; James, S.W.; Lee, S.-W. Nanoassembled thin-film gas sensor II. An intrinsic highly sensitive fibre optic sensor for ammonia detection. Sens. Mater. 2009, 21, 179–189. [Google Scholar]
- Villatoro, J.; Monzón-Hernández, D.; Talavera, D. High resolution refractive index sensing with cladded multimode tapered optical fibre. Electron. Lett. 2004, 40, 106. [Google Scholar] [CrossRef]
- Brophy, T.J.; Bobb, L.C.; Shankar, P.M. In-line singlemode fibre interferometer via concatenated biconical tapers. Electron. Lett. 1993, 29, 1276. [Google Scholar] [CrossRef]
- Dass, S.; Jha, R. Microfiber-Wrapped Bi-Conical-Tapered SMF for Curvature Sensing. IEEE Sens. J. 2016, 16, 3649–3652. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.-H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Oleschuk, R.D. Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Black, R.J.; Bures, J.; Lapierre, J. Finite-cladding fibres: HE12 and local-normal-mode coupling evolution. IEEE Proc. J. 1991, 138, 330–336. [Google Scholar] [CrossRef]
- Chen, G.Y.; Ding, M.; Newson, T.P.; Brambilla, G. A Review of Microfiber and Nanofiber Based Optical Sensors. Open Opt. J. 2013, 7, 32–57. [Google Scholar] [CrossRef]
- Erdogan, T. Cladding-mode resonances in short- and long-period fiber grating filters: Errata. J. Opt. Soc. Am. A 2007, 17, 2113. [Google Scholar] [CrossRef]
- Vohra, S.T. Fiber Bragg grating sensor system for civil structure monitoring: Applications and field tests. In Proceedings of the 13th International Conference on Optical Fiber Sensors (SPIE), Kyongju, Korea, 12–16 April 1999; Volume 3746, p. 107. [Google Scholar] [CrossRef]
- Schroeder, R.J. High pressure and temperature sensing for the oil industry using fiber Bragg gratings written onto side hole single mode fiber. In Proceedings of the 13th International Conference on Optical Fiber Sensors (SPIE), Kyongju, Korea, 12–16 April 1999; Volume 3746, p. 109. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49–R61. [Google Scholar] [CrossRef]
- Bock, W.J.; Chen, J.; Mikulic, P.; Eftimov, T. A Novel Fiber-Optic Tapered Long-Period Grating Sensor for Pressure Monitoring. IEEE Trans. Instrum. Meas. 2007, 56, 1176–1180. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Y.; Liao, C.; Zhou, J.; Zhong, X.; Wang, G.; He, J. Long Period Fiber Gratings Inscribed by Periodically Tapering a Fiber. IEEE Photonics Technol. Lett. 2014, 26, 698–701. [Google Scholar] [CrossRef]
- Mullaney, K.; Staines, S.E.; James, S.W.; Tatam, R.P. Optimized Process for Fabricating Ultrashort Tapered Long-Period Gratings. J. Lightwave Technol. 2018, 36, 1091–1096. [Google Scholar] [CrossRef]
- Martinez-Gaytan, A.; Soto-Olmos, J.; Oropeza-Ramos, L.; Hernandez-Cordero, J. Fabrication Process for PDMS Polymer/Silica Long-Period Fiber Grating Sensors. IEEE Photonics Technol. Lett. 2015, 27, 2150–2153. [Google Scholar] [CrossRef]
- Hsu, K.-C.; Chen, N.-K.; Lee, C.L.; Chih, Y.-S.; Jhuang, P.-J.; Lai, Y.; Lin, C. Spectral Response of Long-Period Fiber Grating Based on Tapered Fiber With Side-Contacted Metal Grating. J. Lightwave Technol. 2010, 28, 1057–1063. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Villatoro, J.; Monzo, D. In-line optical fiber sensors based on cladded multimode tapered fibers. Appl. Optics. 2004, 43, 5933–5938. [Google Scholar] [CrossRef]
- Zibaii, M.I.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S.M.; Ghezelayagh, M.H. Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution. Meas. Sci. Technol. 2010, 21, 105801. [Google Scholar] [CrossRef]
- Jarzebinska, R.; Chehura, E.; James, S.W.; Tatam, R.P. Multiplexing a serial array of tapered optical fibre sensors using coherent optical frequency domain reflectometry. Meas. Sci. Technol. 2012, 23, 105203. [Google Scholar] [CrossRef]
- Liu, G.; Wu, Y.; Li, K.; Hao, P.; Zhang, P.; Xuan, M. Mie Scattering-Enhanced Fiber-Optic Refractometer. IEEE Photonics Technol. Lett. 2012, 24, 658–660. [Google Scholar] [CrossRef]
- Allsop, T.; Floreani, F.; Jedrzejewski, K.P.; Marques, P.V.S.; Romero, R.; Webb, D.J.; Bennion, I. Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature. J. Lightwave Technol. 2006, 24, 870–878. [Google Scholar] [CrossRef]
- Allsop, T.; Floreani, F.; Jedrzejewski, K.; Marques, P.; Romero, R.; Webb, D.; Bennion, I. Refractive index sensing with long-period grating fabricated in biconical tapered fibre. Electron. Lett. 2005, 41, 3–4. [Google Scholar] [CrossRef]
- Allsop, T.; Floreani, F.; Jedrzejewski, K.P.; Romero, R.; Marques, P.V.S.; Webb, D.J.; Bennion, I. Tapered fibre LPG device as a sensing element for refractive index. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23–27 May 2005; Volume 5855, p. 443. [Google Scholar] [CrossRef]
- Ding, J.-F.; Zhang, A.P.; Shao, L.-Y.; Yan, J.-H.; He, S. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photonics Technol. Lett. 2005, 17, 1247–1249. [Google Scholar] [CrossRef]
- Grobnic, D.; Mihailov, S.J.; Ding, H.; Smelser, C.W. Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation. IEEE Photonics Technol. Lett. 2006, 18, 160–162. [Google Scholar] [CrossRef]
- Shao, L.; Zhang, A.P.; Liu, W.; Fu, H.; He, S. Optical Refractive-Index Sensor Based on Dual Fiber-Bragg Gratings Interposed with a Multimode-Fiber Taper. IEEE Photonics Technol. Lett. 2007, 19, 30–32. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Harris, E.; Bao, X. Double-Pass In-Line Fiber Taper Mach–Zehnder Interferometer Sensor. IEEE Photonics Technol. Lett. 2010, 22, 1750–1752. [Google Scholar] [CrossRef]
- Liang, Y.; Liao, C.; Lo, Y. Abrupt Taper Michelson Interferometer Using Heterodyne for Measuring Refractive Index. IEEE Photonics Technol. Lett. 2014, 26, 2330–2333. [Google Scholar] [CrossRef]
- Chen, N.K.; Yang, T.H.; Feng, Z.Z.; Chen, Y.N.; Lin, C. Cellular-dimension picoliter-volume index microsensing using micro-abrupt-tapered fiber Mach-Zehnder interferometers. IEEE Photonics Technol. Lett. 2012, 24, 842–844. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, L.; Hu, H. Fiber-Optic Refractive Index Sensor Based on Multi-Tapered SMS Fiber Structure. IEEE Sens. J. 2015, 15, 6348–6353. [Google Scholar] [CrossRef]
- Sun, G.; Wu, G.; Wang, F.; Tang, R.; Qiu, G. High-Stress Resistance Fiber Refractometer Based on MMF Sandwiched Between Two SMF Half-Tapers. IEEE Photonics Technol. Lett. 2016, 28, 1336–1339. [Google Scholar] [CrossRef]
- Miao, Y.; He, Y.; Ma, X.; Zhang, H.; Song, B.; Yang, X.; Yao, J. Low-Temperature Cross-Sensitivity Refractive Index Sensor Based on Single-Mode Fiber With Periodically Modulated Taper. IEEE Sens. J. 2016, 16, 2442–2446. [Google Scholar] [CrossRef]
- Zibaii, M.I.; Frazao, O.; Latifi, H.; Jorge, P.A.S. Controlling the Sensitivity of Refractive Index Measurement Using a Tapered Fiber Loop Mirror. IEEE Photonics Technol. Lett. 2011, 23, 1219–1221. [Google Scholar] [CrossRef]
- Wang, P.; Brambilla, G.; Ding, M.; Lee, T.; Bo, L.; Semenova, Y.; Farrell, G. Enhanced Refractometer Based on Periodically Tapered Small Core Singlemode Fiber. IEEE Sens. J. 2013, 13, 180–185. [Google Scholar] [CrossRef]
- Fu, H.; Zhao, N.; Shao, M.; Yan, X.; Li, H.; Liu, Q.; Qiao, X. In-Fiber Quasi-Michelson Interferometer Based on Waist-Enlarged Fiber Taper for Refractive Index Sensing. IEEE Sens. J. 2015, 15, 6869–6874. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.-H. In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors. J. Lightwave Technol. 2009, 27, 2296–2306. [Google Scholar] [CrossRef]
- Ni, K.; Chiu, C.; Dong, X.; Poh, C.L.; Li, T. Temperature-independent refractometer based on a tapered photonic crystal fiber interferometer. Opt. Commun. 2013, 291, 238–241. [Google Scholar] [CrossRef]
- Li, C.; Qiu, S.; Chen, Y.; Xu, F.; Lu, Y. Ultra-Sensitive Refractive Index Sensor with Slightly Tapered Photonic Crystal Fiber. IEEE Photonics Technol. Lett. 2012, 24, 1771–1774. [Google Scholar] [CrossRef]
- Shi, F.; Wu, Y.; Wang, J.; Zhao, L.; Shi, H. S-tapered photonic crystal fiber interferometers for refractive index sensing. Opt. Eng. 2013, 52, 035004. [Google Scholar] [CrossRef]
- Ahmed, F.; Index, V.; Sensing, L.; Wild, P.; Jun, M.B.G. Miniaturized Tapered Photonic Crystal Fiber Mach-Zehnder Interferometer for Enhanced Refractive Index Sensing. IEEE Sens. J. 2016, 16, 8761–8766. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, F.; Li, J. Sensitivity-Enhanced Photonic Crystal Fiber Refractive Index Sensor with Two Waist-Broadened Tapers. J. Lightwave Technol. 2016, 34, 1373–1379. [Google Scholar] [CrossRef]
- Feng, C.; Feng, G.-Y.; Zhou, G.-R.; Chen, N.-J.; Zhou, S.-H. Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity. Laser Phys. Lett. 2012, 9, 875. [Google Scholar] [CrossRef]
- Chen, C.; Yang, R.; Zhang, X.; Wei, W.; Guo, Q.; Zhang, X.; Yu, Y. Compact refractive index sensor based on an S-tapered fiber probe. Opt. Mater. Express 2018, 8, 919. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Y.; Wang, Q. SMF Taper Evanescent Field-Based RI Sensor Combined with Fiber Loop Ring Down Technology. IEEE Photonics Technol. Lett. 2015, 27, 1802–1805. [Google Scholar] [CrossRef]
- Pu, S.; Luo, L.; Tang, J.; Mao, L.; Zeng, X. Ultrasensitive Refractive-Index Sensors Based on Tapered Fiber Coupler with Sagnac Loop. IEEE Photonics Technol. Lett. 2016, 28, 1073–1076. [Google Scholar] [CrossRef]
- Taheri Ghahrizjani, R.; Sadeghi, H.; Mazaheri, A. A Novel Method for onLine Monitoring Engine Oil Quality Based on Tapered Optical Fiber Sensor. IEEE Sens. J. 2016, 16, 3551–3555. [Google Scholar] [CrossRef]
- Fu, S.; Dai, H.; Shi, Q.; Peng, B. A Refractive Index Sensor Based on the Tapering Theory. IEEE Sens. J. 2016, 16, 954–957. [Google Scholar] [CrossRef]
- Zhu, C.; Yu, Y.; Zhang, X.; Chen, C.; Liang, J.; Liu, Z.; Sun, H.-B. Compact Mach–Zehnder Interferometer Based on Tapered Hollow Optical Fiber. IEEE Photonics Technol. Lett. 2015, 27, 1277–1280. [Google Scholar] [CrossRef]
- Xiong, M.; Gong, H.; Wang, Z.; Zhao, C.; Dong, X. Simultaneous Refractive Index and Temperature Measurement Based on Mach—Zehnder Interferometer Concatenating Two Bi-Tapers and a Long-Period Grating. IEEE Sens. J. 2016, 16, 4295–4299. [Google Scholar] [CrossRef]
- Lin, H.; Huang, C.; Cheng, G.; Chen, N.; Chui, H. Tapered optical fiber sensor based on localized surface plasmon resonance. Opt. Express 2012, 20, 21693. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.K.; Gupta, B.D. A Multitapered Fiber-Optic SPR Sensor with Enhanced Sensitivity. IEEE Photonics Technol. Lett. 2011, 23, 923–925. [Google Scholar] [CrossRef]
- Verma, R.K.; Sharma, A.K.; Gupta, B.D. Modeling of Tapered Fiber-Optic Surface Plasmon Resonance Sensor with Enhanced Sensitivity. IEEE Photonics Technol. Lett. 2007, 19, 1786–1788. [Google Scholar] [CrossRef]
- Baeten, B.V.; Dardenne, P. Spectroscopy: Developments in Instrumentation and Analysis. Grasas Y Aceites 2002, 53, 45–63. [Google Scholar] [CrossRef]
- Falciai, R.; Mignani, A.G.; Ciaccheri, L.; Cosi, F. Tapered multimode optical fibers for enhanced evanescent-wave absorption spectroscopy of liquids. In Chemical, Biochemical and Environmental Fiber Sens. IX; Lieberman, R.A., Ed.; International Society for Optics and Photonics: Paris, France, 1997; Volume 3105, pp. 2–12. [Google Scholar]
- Hale, Z.; Payne, F.; Marks, R.; Lowe, C.; Levine, M. The single mode tapered optical fibre loop immunosensor. Biosens. Bioelectron. 1996, 11, 137–148. [Google Scholar] [CrossRef]
- Girón, D.; Delgado, T.; Ruiz, J.; Cabalín, L.M.; Laserna, J.J. In-situ monitoring and characterization of airborne solid particles in the hostile environment of a steel industry using stand-off LIBS. Measurement 2018, 115, 1–10. [Google Scholar] [CrossRef]
- Edwards, P.S.; Janisch, C.T.; Peng, B.; Zhu, J.; Ozdemir, S.K.; Yang, L.; Liu, Z. Label-Free Particle Sensing by Fiber Taper-Based Raman Spectroscopy. IEEE Photonics Technol. Lett. 2014, 26, 2093–2096. [Google Scholar] [CrossRef]
- Zhu, J.; Ozdemir, Ş.K.; Yang, L. Optical Detection of Single Nanoparticles with a Subwavelength Fiber-Taper. IEEE Photonics Technol. Lett. 2011, 23, 1346–1348. [Google Scholar] [CrossRef]
- Nayak, K.P.; Hakuta, K. Single atoms on an optical nanofibre. New J. Phys. 2008, 10, 53003. [Google Scholar] [CrossRef]
- Díaz-Herrera, N.; González-Cano, A.; Viegas, D.; Santos, J.L.; Navarrete, M.-C. Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibres operating in the 1.5 μm region. Sens. Actuators B Chem. 2010, 146, 195–198. [Google Scholar] [CrossRef]
- Díaz Herrera, N.; Esteban, Ó.; Navarrete, M.-C.; González-Cano, A.; Benito-Peña, E.; Orellana, G. Improved performance of SPR sensors by a chemical etching of tapered optical fibers. Opt. Lasers Eng. 2011, 49, 1065–1068. [Google Scholar] [CrossRef]
- Cusano, A.; Pilla, P.; Contessa, L.; Iadicicco, A.; Campopiano, S.; Cutolo, A.; Guerra, G. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. Appl. Phys. Lett. 2005, 87, 234105. [Google Scholar] [CrossRef]
- James, S.W.; Cheung, C.S.; Tatam, R.P. Experimental observations on the response of 1st and 2nd order fibre optic long period grating coupling bands to the deposition of nanostructured coatings. Opt. Express 2007, 15, 13096. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Duan, Y. Optical fiber-based evanescent ammonia sensor. Sens. Actuators B Chem. 2005, 110, 252–259. [Google Scholar] [CrossRef]
- Tao, S.; Gong, S.; Fanguy, J.C.; Hu, X. The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing. Sens. Actuators B Chem. 2007, 120, 724–731. [Google Scholar] [CrossRef]
- Kar, S.; Arnold, M.A. Air-gap fiber-optic ammonia gas sensor. Talanta 1993, 40, 757–760. [Google Scholar] [CrossRef]
- Korposh, S.; Selyanchyn, R.; Yasukochi, W.; Lee, S.-W.; James, S.W.; Tatam, R.P. Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water. Mater. Chem. Phys. 2012, 133, 784–792. [Google Scholar] [CrossRef]
- Tiwari, D.; Mullaney, K.; Korposh, S.; James, S.W.; Lee, S.-W.; Tatam, R.P. Ammonia sensing using lossy mode resonances in a tapered optical fibre coated with porphyrin-incorporated titanium dioxide. In Proceedings of the Sixth European Workshop on Optical Fibre Sensors. International Society for Optics and Photonics, Limerick, Ireland, 31 May–3 June 2016; Volume 9916. [Google Scholar]
- Golden, J.P.; Anderson, G.P.; Rabbany, S.Y.; Ligler, F.S. An evanescent wave biosensor. II. Fluorescent signal acquisition from tapered fiber optic probes. IEEE Trans. Biomed. Eng. 1994, 41, 585–591. [Google Scholar] [CrossRef]
- Veselov, A.; Thür, C.; Efimov, A.; Guina, M.; Lemmetyinen, H.; Tkachenko, N. Acidity sensor based on porphyrin self-assembled monolayers covalently attached to the surfaces of tapered fibres. Meas. Sci. Technol. 2010, 21, 115205. [Google Scholar] [CrossRef]
- Espada, L.I.; Shadaram, M.; Robillard, J.; Pannell, K.H. Ferrocenylenesilylene Polymers as Coatings for Tapered Optical-Fiber Gas Sensors. J. Inorg. Organomet. Polym. 2000, 10, 169–176. [Google Scholar] [CrossRef]
- Corres, J.M.; Bravo, J.; Matias, I.R.; Arregui, F.J. Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms. IEEE Photonics Technol. Lett. 2006, 18, 935–937. [Google Scholar] [CrossRef]
- Matias, I.R.; Arregui, F.J.; Corres, J.M.; Bravo, J. Evanescent Field Fiber-Optic Sensors for Humidity Monitoring Based on Nanocoatings. IEEE Sens. J. 2007, 7, 89–95. [Google Scholar] [CrossRef]
- Corres, J.M.; Arregui, F.J.; Matías, I.R. Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings. Sens. Actuators B Chem. 2007, 122, 442–449. [Google Scholar] [CrossRef]
- Socorro, A.B.; Del Villar, I.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Influence of Waist Length in Lossy Mode Resonances Generated with Coated Tapered Single-Mode Optical Fibers. IEEE Photonics Technol. Lett. 2011, 23, 1579–1581. [Google Scholar] [CrossRef]
- Socorro, A.B.; Villar, I.; Del Corres, J.M.; Arregui, F.J.; Matias, I.R. Tapered Single-Mode Optical Fiber pH Sensor Based on Lossy Mode Resonances Generated by a Polymeric Thin-Film. IEEE Sens. J. 2012, 12, 2598–2603. [Google Scholar] [CrossRef]
- Li, T.; Dong, X.; Chan, C.C.; Zhao, C.; Zu, P. Humidity Sensor Based on a Multimode-Fiber Taper Coated with Polyvinyl Alcohol Interacting with a Fiber Bragg Grating. IEEE Sens. J. 2012, 12, 2205–2208. [Google Scholar] [CrossRef]
- An, J.; Jin, Y.; Sun, M.; Dong, X. Relative Humidity Sensor Based on SMS Fiber Structure with Two Waist-Enlarged Tapers. IEEE Sens. J. 2014, 14, 2683–2686. [Google Scholar] [CrossRef]
- Liu, H.; Miao, Y.; Liu, B.; Lin, W.; Zhang, H.; Song, B.; Lin, L. Relative Humidity Sensor Based on S-Taper Fiber Coated with SiO2 Nanoparticles. IEEE Sens. J. 2015, 15, 3424–3428. [Google Scholar] [CrossRef]
- Lokman, A.; Arof, H.; Harun, S.W.; Harith, Z.; Rafaie, H.A.; Nor, R.M. Optical Fiber Relative Humidity Sensor Based on Inline Mach–Zehnder Interferometer with ZnO Nanowires Coating. IEEE Sens. J. 2016, 16, 312–316. [Google Scholar] [CrossRef]
- Bariáin, C.; Matías, I.R.; Romeo, I.; Garrido, J.; Laguna, M. Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber. Appl. Phys. Lett. 2000, 77, 2274–2276. [Google Scholar] [CrossRef]
- Villatoro, J.; Díez, A.; Cruz, J.L.; Andrés, M.V. Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre. Electron. Lett. 2001, 37, 1011. [Google Scholar] [CrossRef]
- Villatoro, J.; Diez, A.; Cruz, J.L.; Andres, M.V. In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers. IEEE Sens. J. 2003, 3, 533–537. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, M.; Lin, Z. Novel technology for depositing a Pd–Ag alloy film on a tapered optical fibre for hydrogen sensing. J. Opt. A Pure Appl. Opt. 2005, 7, 593–598. [Google Scholar] [CrossRef]
- Silva, S.; Coelho, L.; Almeida, J.M.; Frazao, O.; Santos, J.L.; Malcata, F.X.; Bartelt, H. H2 Sensing Based on a Pd-Coated Tapered-FBG Fabricated by DUV Femtosecond Laser Technique. IEEE Photonics Technol. Lett. 2013, 25, 401–403. [Google Scholar] [CrossRef]
- McCulloch, S.; Uttamchandani, D. Development of a fibre optic micro-optrode for intracellular pH measurements. IEE Proc. Optoelectron. 1997, 144, 162. [Google Scholar] [CrossRef]
- Pangaribuan, T.; Ikai, A.; Jiang, S.; Ohtsu, M.; Ohsawa, H.; Yamada, K.; Imai, K. Nanometric Scale Biosample Observation Using a Photon Scanning Tunneling Microscope. Jpn. J. Appl. Phys. 1992, 31, 2282–2287. [Google Scholar] [CrossRef]
- Martan, T.; Pospisilova, M.; Aubrecht, J.; Mrazek, J.; Podrazky, O.; Kasik, I.; Matejec, V. Tapered optical fibres for local {pH} detection. J. Phys. Conf. Ser. 2010, 206, 12017. [Google Scholar] [CrossRef]
- Chen, L.H.; Chan, C.C.; Ni, K.; Hu, P.B.; Li, T.; Wong, W.C.; Leong, K.C. Label-free fiber-optic interferometric immunosensors based on waist-enlarged fusion taper. Sens. Actuators B Chem. 2013, 178, 176–184. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, W.; Wu, N.; Zou, X.; Wang, X. Tapered Optical Fiber Sensor for Label-Free Detection of Biomolecules. Sensors 2011, 11, 3780–3790. [Google Scholar] [CrossRef] [PubMed]
- Zibaii, M.I.; Latifi, H.; Asadollahi, A.; Bayat, A.H.; Dargahi, L.; Haghparast, A. Label Free Fiber Optic Apta-Biosensor for In-Vitro Detection of Dopamine. J. Lightwave Technol. 2016, 34, 4516–4524. [Google Scholar] [CrossRef]
- Diaz-Herrera, N.; Navarrete, M.C.; Esteban, O.; González-Cano, A. A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Meas. Sci. Technol. 2004, 15, 353. [Google Scholar] [CrossRef]
- Batumalay, M.; Harun, S.W.; Ahmad, F.; Nor, R. Tapered Plastic Optical Fiber Coated with Graphene for Uric Acid Detection. IEEE Sens. J. 2014, 14, 1704–1709. [Google Scholar] [CrossRef]
- Irigoyen, M.; Sánchez-Martin, J.A.; Bernabeu, E.; Zamora, A. Tapered optical fiber sensor for chemical pollutants detection in seawater. Meas. Sci. Technol. 2017, 28, 045802. [Google Scholar] [CrossRef]
- Yu, Z.; Jin, L.; Sun, L.; Li, J.; Ran, Y.; Guan, B. Highly Sensitive Fiber Taper Interferometric Hydrogen Sensors. IEEE Photonics J. 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Martin, A.; Badcock, R.; Nightingale, C.; Fernando, G.F. A novel optical fiber-based strain sensor. IEEE Photonics Technol. Lett. 1997, 9, 982–984. [Google Scholar] [CrossRef]
- Wieduwilt, T.; Brückner, S.; Bartelt, H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers. Meas. Sci. Technol. 2011, 22, 075201. [Google Scholar] [CrossRef]
- Du, W.; Tao, X.; Tam, H.-Y. Temperature independent strain measurement with a fiber grating tapered cavity sensor. IEEE Photonics Technol. Lett. 1999, 11, 596–598. [Google Scholar] [CrossRef]
- Amaral, L.M.N.; Frazão, O.; Santos, J.L.; Ribeiro, A.B.L. Fiber-Optic Inclinometer Based on Taper Michelson Interferometer. IEEE Sens. J. 2011, 11, 1811–1814. [Google Scholar] [CrossRef]
- Luo, H.; Li, X.; Zou, W.; Li, X.; Hong, Z.; Chen, J. Temperature-Insensitive Microdisplacement Sensor Based on Locally Bent Microfiber Taper Modal Interferometer. IEEE Photonics J. 2012, 4, 772–778. [Google Scholar] [CrossRef]
- Osuch, T.; Markowski, K.; Jedrzejewski, K. Temperature Independent Tapered Fiber Bragg Grating-Based Inclinometer. IEEE Photonics Technol. Lett. 2015, 27, 2312–2315. [Google Scholar] [CrossRef]
- Gong, H.; Qian, Z.; Yang, X.; Zhao, C.; Dong, X. Optical Fiber Inclinometer Based on a Fiber Taper Cascading a Peanut-Shape Structure. IEEE Sens. J. 2015, 15, 3917–3920. [Google Scholar] [CrossRef]
- Lu, P.; Lin, G.; Wang, X.; Chen, L.; Bao, X. Lateral Stress Detection Using a Tapered Fiber Mach–Zehnder Interferometer. IEEE Photonics Technol. Lett. 2012, 24, 2038–2041. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Intensity modulation type fiber-optic strain sensor based on a Mach–Zehnder interferometer constructed by an up-taper with a LPG. Opt. Commun. 2016, 364, 72–75. [Google Scholar] [CrossRef]
- Rajan, G.; Callaghan, D.; Semenova, Y.; Farrell, G. Photonic Crystal Fiber Sensors for Minimally Invasive Surgical Devices. IEEE Trans. Biomed. Eng. 2012, 59, 332–338. [Google Scholar] [CrossRef]
- Geng, Y.; Li, X.; Tan, X.; Deng, Y.; Yu, Y. High-Sensitivity Mach–Zehnder Interferometric Temperature Fiber Sensor Based on a Waist-Enlarged Fusion Bitaper. IEEE Sens. J. 2011, 11, 2891–2894. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.-H. In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor. IEEE Photonics Technol. Lett. 2009, 21, 161–163. [Google Scholar] [CrossRef]
- Monzon-Hernandez, D.; Minkovich, V.P.; Villatoro, J. High-temperature sensing with tapers made of microstructured optical fiber. IEEE Photonics Technol. Lett. 2006, 18, 511–513. [Google Scholar] [CrossRef]
- Zhao, N.; Fu, H.; Shao, M.; Yan, X.; Li, H.; Liu, Q.; Gao, H. High temperature probe sensor with high sensitivity based on Michelson interferometer. Opt. Commun. 2015, 343, 131–134. [Google Scholar] [CrossRef]
- Yoon, M.-S.; Park, S.; Han, Y.-G. Simultaneous Measurement of Strain and Temperature by Using a Micro-Tapered Fiber Grating. J. Lightwave Technol. 2012, 30, 1156–1160. [Google Scholar] [CrossRef]
- Lima, H.F.; Antunes, P.F.; Pinto, J.D.L.; Nogueira, R.N. Simultaneous Measurement of Strain and Temperature with a Single Fiber Bragg Grating Written in a Tapered Optical Fiber. IEEE Sens. J. 2010, 10, 269–273. [Google Scholar] [CrossRef]
- Frazão, O.; Melo, M.; Marques, P.V.S.; Santos, J.L. Chirped Bragg grating fabricated in fused fibre taper for strain–temperature discrimination. Meas. Sci. Technol. 2005, 16, 984–988. [Google Scholar] [CrossRef]
- Lu, P.; Chen, Q. Asymmetrical Fiber Mach–Zehnder Interferometer for Simultaneous Measurement of Axial Strain and Temperature. IEEE Photonics J. 2010, 2, 942–953. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, T.; Chiang, K.S.; Deng, M. All Single-Mode Fiber Mach–Zehnder Interferometer Based on Two Peanut-Shape Structures. J. Lightwave Technol. 2012, 30, 805–810. [Google Scholar] [CrossRef]
- Dong, B.; Peng, Y.; Wang, Y.; Yu, C. Mode Division Multiplexing in a Fiber Modal Interferometer for Dual-Parameters Measurement. IEEE Photonics Technol. Lett. 2016, 28, 143–146. [Google Scholar] [CrossRef]
- Men, L.; Lu, P.; Chen, Q. Femtosecond Laser Trimmed Fiber Taper for Simultaneous Measurement of Axial Strain and Temperature. IEEE Photonics Technol. Lett. 2011, 23, 320–322. [Google Scholar] [CrossRef]
- André, R.M.; Biazoli, C.R.; Silva, S.O.; Marques, M.B.; Cordeiro, C.M.B.; Frazão, O. Strain-Temperature Discrimination Using Multimode Interference in Tapered Fiber. IEEE Photonics Technol. Lett. 2013, 25, 155–158. [Google Scholar] [CrossRef]
- Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef]
- Yang, R.; Yu, Y.; Xue, Y.; Chen, C.; Chen, Q.; Sun, H. Single S-tapered fiber Mach—Zehnder interferometers. Opt. Lett. 2011, 36, 4482–4484. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.J.M.; Marques, M.B.; Roy, P.; Jamier, R.; Fevrier, S.; Frazao, O. Temperature-Independent Multi-Parameter Measurement Based on a Tapered Bragg Fiber. IEEE Photonics Technol. Lett. 2016, 28, 1565–1568. [Google Scholar] [CrossRef]
- Gan, L.; Wang, R.; Liu, D.; Duan, L.; Liu, S.; Fu, S.; Tang, M. Spatial-Division Multiplexed Mach–Zehnder Interferometers in Heterogeneous Multicore Fiber for Multiparameter Measurement. IEEE Photonics J. 2016, 8, 1–8. [Google Scholar] [CrossRef]
Type of the Sensor | Taper Geometry | Sensitivity/RIU Resolution RIU | RI Range | Reference |
---|---|---|---|---|
Single taper devices | Waist 60 μm | 10−4 RIU | 1.36–1.46 | [43] |
Waist 7 μm | 8.2 × 10−6 | 1.3330–1.3447 | [61] | |
Mie scattering (silica nanoparticles) | Waist 2.8 μm | 1.8 × 10−5 RIU | 1.32–1.46 | [63] |
LPG | Waist 34 μm LPG 400 μm | 1 × 10−4 RIU | 1.30–1.34 | [65] |
Waist 20 μm LPG ca. 400 μm | 650 nm/RIU | 1.00–1.36 | [57] | |
Waist 120 μm LPG 380 μm 6 periods | 372 nm/RIU | 1.33–1.46 | [55] | |
Waist 55 μm Length 3 mm | 490.9 nm/RIU | 1.3642–1.4015 | [75] | |
MZI | Waist 25 μm LPG 300 μm | 8.5 × 10−5 | 1.330–1.335 | [64] |
Waist 63.75 μm LPG 414 μm | 5.8 × 10−6 RIU | 1.332–1.362 | [67] | |
Waist 54.6 μm LPG 564 μm | 2066 nm/RIU | 1.407–1.421 | [30] | |
Bi-taper length and waist 165 and 278 μm LPG period 550 μm and length 30 mm | −108.16 nm/RI | 1.338–1.363 | [92] | |
Waist 66.5 μm Length 309 μm | 7041.21 nm/RIU | 1.4406–1.4458 | [91] | |
FBG | Waist 30 μm | 2.5−5 × 10−5 | 1.450–1.456 | [68] |
- | 1.63 ± 0.0 × 105 3.05 ± 0.01 × 105 dB/RIU | - | [70] | |
6–8 μm | 876–1233 nm/RIU | 1.3380–1.3510 | [76] | |
Waist 90 μm LPG 500 μm | 226.6 nm/RIU | 1.33–1.38 | [77] | |
UFBT 167 μm DSB 82 μm | 86.565 nm/cm/RIU | 1.3332–1.4140 | [21] | |
Waist 40 μm | 10−4 RIU | 1.315–1.3618 | [46,79] | |
Photonic crystals | Waist 71.7 μm | 1529 nm/RIU | 1.3355–1.413 | [80] |
Waist 30 μm | 1600 nm/RIU | 1.3333–1.3577 | [81] | |
Waist 2 μm | 190 nm/RIU | 1.000–1.009 | [85] | |
Waist 60 μm | 8.5 × 10−5 | 1.34–1.44 | [82] | |
Waist 70 μm | 1426.70 nm/RIU | 1.3917–1.4204 | [83] | |
Length 440 μm Waist 284 μm | 281.6 nm/RIU | 1.3333–1.3737 | [84] | |
SPR | Waist 48 μm | 3.2 × 10−5 RIU | 1.33–1.40 | [93] |
- | 2 × 103 nm/RIU | 1.335–1.380 | [94] | |
Waist 300 μm | 15 × 103 nm/RIU | - | [95] | |
Multi-taper devices | Waist 52 μm Length 552 μm | 261.9 nm/RIU | 1.3333–1.3737 | [73] |
Waist 76.5 μm and 13.2 μm | 4000 nm/RIU | around 1.45 | [39] | |
Waist 17 μm Length 3 mm | 500.6 nm/RIU | 1.333–1.411 | [74] | |
Bending at 45° and 90° | Waist 40 to 50 μm | 126.15 nm/RIU at 90o | 1.333–1.359 | [90] |
Fibre Loop Ring Down Technology | Waist 28.2 μm Length 728 μm | −388.581 μs/RIU | 1.3333–1.3737 | [87] |
Sagnac loop | Waist 18, 13 and 9 μm Length: 16, 17 and 18 mm | 3617 nm/RIU | 1.33–1.41 | [88] |
Michelson interferometer | Length 20cm | 1.35 × 104/RIU | 1.3330–13470 | [71] |
Waist 165–185 μm Bi-taper length is 375–490 μm Device length 20 mm | −178.424 dB/RIU | 1.351–1.4027 | [78] |
Analyte | Taper Geometry/Waist Diameter | Sensitivity Limit of Detection | Coating Material | Response/Recovery Times | Dynamic Range | Reference |
---|---|---|---|---|---|---|
Ammonia gas | detection limit of 10 ppm | bromocresol purple | Response time 5 min Recovery time 20 min | 10–1000 ppm | [107] | |
LoD 15 ppm | Oxazine 170 | - | 0–3000 ppm | [108] | ||
Waist 10 μm | LoD 2 ppm | Porphyrin TSPP | Response 100 s recovery 240 s | 10–100 ppm | [110] | |
Waist 41 μm | 0.05%/Torr | ferrocenylenesilylene polymer, [(’5-C5H4)Fe(’5-C5H4)MePhSi]m | ca. 5 min | 6–350 Torr | [114] | |
Waist 17 and 40 μm Length 4.5 mm | LoD 0.1 ppm | Porphyrin TMPyP incorporated into TiO2 | Response 30 s | 0.1–10,000 ppm | [111] | |
pH | Waist 35 μm | - | porphyrin | - | 0.6–3.8 | [113] |
5 μm 37.4 μm | ΔpH = 5 × 10−2 ΔpH = 4 × 10−2 | quinolinium dye | 0.5 s | 2–10 | [8] | |
30 μm | 0.05 units of pH | poly (allylamine hydrochloride) and poly(acrylic acid) | 60 s | 4.0–6.0 | [119] | |
4 μm 60 μm | - | 2’,7’-Bis(2-carbonylethyl)-5(6)-carboxyfluorescein | - | 5.0–7.0 | [131] | |
CO2 | Waist 41 μm | 0.06%/Torr | ferrocenylenesilylene polymer, [(’5-C5H4)Fe(’5-C5H4)MePhSi]m | ca. 5 min | 6–350 Torr | [114] |
RH | Poly(Diallylmethilammonium chloride) (PDDA) and the polymeric Dye R-478 (Poly-R) | [115,116,117,118] | ||||
Waist 50.2 μm | 1.994 μW/% RH | polyvinyl alcohol | ca. 2 s | 30–95% RH | [120] | |
Waist 150 μm | 0.223 nm/% RH | polyvinyl alcohol (5 μm) | - | 35% to 85% | [121] | |
Waist 74 μm Length 468 μm | 1.1718 nm/% RH and 0.441 dB/% RH | SiO2 NPs (7 μm) | - | 83.8% RH to 95.2% RH | [122] | |
Waist 95 μm Length: 1 mm | 0.020 nm/% RH | ZnO | - | 35–60% RH | [123] | |
acetone | 19 μm | 0.04 dBm/mm Hg | [Au(PPh2C(CSSAuC6F5)PPh2Me)2][ClO4] vapochromic material | 32 min | 231–277 mm Hg | [124] |
dichloromethane | 19 μm | 0.03 dBm/mm Hg | [Au(PPh2C(CSSAuC6F5)PPh2Me)2][ClO4] vapochromic material | 31 min | 436 mm Hg | [124] |
H2 | 20 μm | 0.05 %/% H2 | Pd-coated | <100 s | 0–10.5% | [125,126] |
50 μm | 0.02 %/% H2 | Pd-coated | <100 s | 0–2% | [60] | |
36 μm | 0.01 625 mW/% H2 | Pd–Ag alloy | - | 0–4% | [127] | |
50 μm | 81.8 pm/% (v/v) H2 | Pd coating | - | 0–1% (v/v) H2 | [128] | |
5 μm | –1.9 nm/5% H2 | Pd coating | 10 s | 0–5% (v/v) H2 | [138] | |
Biosensor | 146 μm | 0.181 nM | Immunoglobulin on chitosan (CS)/polysodium styrene sulfonate (PSS)) | 100 s | 2–11 nM | [132] |
Uric acid | POF (waist 0.45 mm) | 0.0021 mV/ppm | Graphene in PVA | - | 0–500 ppm | [136] |
dopamine | Length 15–20 mm; waist 6–9 μm | LoD 37 nM | Dopamine-specific DNA aptamer | - | 0–1 μM | [134] |
Measurand | Taper Geometry | Sensitivity Limit of Detection | Dynamic Range | Reference |
---|---|---|---|---|
Temperature | Waist 20 μm LPG ca. 400 μm | –0.24 nm/°C | 25–75 °C | [57] |
170 μm 280 μm | 0.070 nm/°C | 0–450 °C | [149] | |
- | 46.8 pm/°C | - | [157] | |
Waist 66.5 μm Length 309 μm | 9.8 pm/°C | 30∼100 °C | [91] | |
Waist 97 μm Length 491 μm | 49.52 pm/°C | 20–80 °C | [147] | |
Waist 42 μm Length 2.4 mm | 47.37 pm/°C | 20–80 °C | [164] | |
Waist 168 μm Length 245 μm | 57.5 pm/ °C | 25–70 °C | [158] | |
Waist 165 μm Length 340 μm, | 0.140 nm/°C | 30–800 °C | [152] | |
Stress | Taper angle 5o | 0.04 V/GPa | 0–0.5 GPa | [139] |
Waist 66.5 μm Length 309 μm | −6.26 nm/N | 0∼1 N | [91] | |
- | 1.2 pm/με | 1200 με | [141] | |
Strain | 40 μm | 2000 nm/ε | 100–900 με | [150] |
- | 14 pm/με | - | [157] | |
65 μm | –183.4 pm/με | - | [162] | |
Length 5 mm waist 35 μm | 22.68 pm/με | 0–400 με | [163] | |
Waist 168 μm Length 245 μm | 1.02 pm/με | 81.3–1626 με | [158] | |
Waist 161 μm | 0.026 dB/με | 0–590 με | [147] | |
Force | 4 μm | 1900 nm N−1 | 0–0.15 N | [140] |
Pressure | 115–120 μm | 5.1 pm/bar | 0–450 bar | [53] |
Angle | 50 μm Length 44 mm | 1° | 0°–90° | [144] |
Length 5 mm waist 35 μm | 185.10 pm/deg | 0°–10° | [163] | |
Length 1.37 mm waist 50 μm | −4.49 nm/° | 3°–6.66° | [145] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korposh, S.; James, S.W.; Lee, S.-W.; Tatam, R.P. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors 2019, 19, 2294. https://doi.org/10.3390/s19102294
Korposh S, James SW, Lee S-W, Tatam RP. Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors. 2019; 19(10):2294. https://doi.org/10.3390/s19102294
Chicago/Turabian StyleKorposh, Sergiy, Stephen W. James, Seung-Woo Lee, and Ralph P. Tatam. 2019. "Tapered Optical Fibre Sensors: Current Trends and Future Perspectives" Sensors 19, no. 10: 2294. https://doi.org/10.3390/s19102294
APA StyleKorposh, S., James, S. W., Lee, S. -W., & Tatam, R. P. (2019). Tapered Optical Fibre Sensors: Current Trends and Future Perspectives. Sensors, 19(10), 2294. https://doi.org/10.3390/s19102294