Mass-Sensitive Sensing of Melamine in Dairy Products with Molecularly Imprinted Polymers: Matrix Challenges
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Samples
2.2. Preparation of the MIP/NIP—QCM Sensors
2.3. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, H.; Halden, R.U.; Kannan, K. A nationwide survey of the occurrence of melamine and its derivatives in archived sewage sludge from the United States. Environ. Pollut. 2019, 245, 994–999. [Google Scholar] [CrossRef]
- Pinto, J.; Magri, D.; Valentini, P.; Palazon, F.; Heredia-Guerrero, J.A.; Lauciello, S.; Barroso-Solares, S.; Ceseracciu, L.; Pompa, P.P.; Athanassiou, A.; et al. Antibacterial Melamine Foams Decorated with in Situ Synthesized Silver Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 16095–16104. [Google Scholar] [CrossRef]
- Araújo, R.; Moreira, J.L.; Ratola, N.; Santos, L.; Alves, A. Melamine and Cyanuric Acid in Foodstuffs and Pet Food: Method Validation and Sample Screening. Anal. Lett. 2012, 45, 613–624. [Google Scholar] [CrossRef]
- Liao, C.W.; Chen, Y.R.; Chang, J.L.; Zen, J.M. Single-run electrochemical determination of melamine in dairy products and pet foods. J. Agric. Food Chem. 2011, 59, 9782–9787. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein Nitrogen Determination by Kjeldahl Digestion and Ion Chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Sathyanarayana, S.; Flynn, J.T.; Messito, M.J.; Gross, R.; Whitlock, K.B.; Kannan, K.; Karthikraj, R.; Morrison, D.; Huie, M.; Christakis, D.; et al. Melamine and cyanuric acid exposure and kidney injury in US children. Environ. Res. 2019, 171, 18–23. [Google Scholar] [CrossRef]
- Stine, C.B.; Reimschuessel, R.; Keltner, Z.; Nochetto, C.B.; Black, T.; Olejnik, N.; Scott, M.; Bandele, O.; Nemser, S.M.; Tkachenko, A.; et al. Reproductive toxicity in rats with crystal nephropathy following high doses of oral melamine or cyanuric acid. Food Chem. Toxicol. 2014, 68, 142–153. [Google Scholar] [CrossRef]
- Pet Food Recall Frequently Asked Questions. Available online: https://web.archive.org/web/20070407113721/http://www.fda.gov/cvm/MenuFoodRecallFAQ.htm (accessed on 3 April 2007).
- Gossner, C.M.-E.; Schlundt, J.; Ben Embarek, P.; Hird, S.; Lo-Fo-Wong, D.; Beltran, J.J.O.; Teoh, K.N.; Tritscher, A. The melamine incident: Implications for international food and feed safety. Environ. Health Perspect. 2009, 117, 1803–1808. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, H.; Tu, W.; Yang, H.; Wong, W.H.; Wong, W.T.; Yung, K.F.; Zhou, N.; Zhang, J.; Li, X.; et al. Melamine-tainted milk product-associated urinary stones in children. Pediatr. Int. 2011, 53, 489–496. [Google Scholar] [CrossRef] [PubMed]
- WHO. Melamine Milk Crisis—Countries to Ensure Safe Feeding for Infants and Increase Vigilance. Available online: http://www.wpro.who.int/china/mediacentre/releases/2008/20080926_04/en/ (accessed on 10 October 2017).
- Filazi, A.; Sireli, U.T.; Ekici, H.; Can, H.Y.; Karagoz, A. Determination of melamine in milk and dairy products by high performance liquid chromatography. J. Dairy Sci. 2012, 95, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Yokley, R.A.; Mayer, L.C.; Rezaaiyan, R.; Manuli, M.E.; Cheung, M.W. Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. J. Agric. Food Chem. 2000, 48, 3352–3358. [Google Scholar] [CrossRef] [PubMed]
- Garber, E.A. Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J. Food Prot. 2008, 71, 590–594. [Google Scholar] [CrossRef]
- Lu, Y.; Xia, Y.Q.; Liu, G.Z.; Pan, M.F.; Li, M.J.; Lee, N.A.; Wang, S. A Review of Methods for Detecting Melamine in Food Samples. Crit. Rev. Anal. Chem. 2017, 47, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Feng, Y.; Han, X.X.; Gao, Z.N. Sensitive electrochemical detection of melamine based on gold nanoparticles deposited on a graphene doped carbon paste electrode. Anal. Methods 2016, 8, 2526–2532. [Google Scholar] [CrossRef]
- Xu, S.; Lin, G.Y.; Zhao, W.; Wu, Q.; Luo, J.; Wei, W.; Liu, X.Y.; Zhu, Y. Necklace-like Molecularly Imprinted Nanohybrids Based on Polymeric Nanoparticles Decorated Multiwalled Carbon Nanotubes for Highly Sensitive and Selective Melamine Detection. ACS Appl. Mater. Interfaces 2018, 10, 24850–24859. [Google Scholar] [CrossRef]
- Tang, L.; Mo, S.; Liu, S.G.; Ling, Y.; Zhang, X.F.; Li, N.B.; Luo, H.Q. A Sensitive “Turn-On” Fluorescent Sensor for Melamine Based on FRET Effect between Polydopamine-Glutathione Nanoparticles and Ag Nanoparticles. J. Agric. Food Chem. 2018, 66, 2174–2179. [Google Scholar] [CrossRef]
- Zhang, C.J.; Gao, Z.Y.; Wang, Q.B.; Zhang, X.; Yao, J.S.; Qiao, C.D.; Liu, Q.Z. Highly Sensitive Detection of Melamine Based on the Fluorescence Resonance Energy Transfer between Conjugated Polymer Nanoparticles and Gold Nanoparticles. Polymer 2018, 10, 873. [Google Scholar] [CrossRef]
- Lian, S.; Huang, Z.Y.; Lin, Z.Z.; Chen, X.; Oyama, M.; Chen, X.M. A highly selective melamine sensor relying on intensified electrochemiluminescence of the silica nanoparticles doped with [Ru(bpy)(3)](2+)/molecularly imprinted polymer modified electrode. Sens. Actuators B Chem. 2016, 236, 614–620. [Google Scholar] [CrossRef]
- Li, H.; Somerson, J.; Xia, F.; Plaxco, K.W. Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Anal. Chem. 2018, 90, 10641–10645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janshoff, A.; Galla, H.J.; Steinem, C. Piezoelectric Mass-Sensing Devices as Biosensors-An Alternative to Optical Biosensors? Angew. Chem. Int. Ed. 2000, 39, 4004–4032. [Google Scholar] [CrossRef]
- Curie, J.; Curie, P. Phénomènes électriques des cristaux hémièdres à faces inclinées. J. Phys. Theor. Appl. 1882, 1, 245–251. [Google Scholar] [CrossRef]
- Mould, R.F. Pierre curie, 1859–1906. Curr. Oncol. (Tor. Ont.) 2007, 14, 74–82. [Google Scholar] [CrossRef]
- Huang, G.S.; Wang, M.T.; Su, C.W.; Chen, Y.S.; Hong, M.Y. Picogram detection of metal ions by melanin-sensitized piezoelectric sensor. Biosens. Bioelectron. 2007, 23, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar] [CrossRef]
- Alenus, J.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Csipai, P.; Gruber, J.; Peeters, M.; Cleij, T.J.; Wagner, P. Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of L-nicotine in diluted saliva and urine samples. Anal. Bioanal. Chem. 2013, 405, 6479–6487. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Wackerlig, J.; Lieberzeit, P.A. Biomimetic strategies for sensing biological species. Biosensors 2013, 3, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Zheng, J.; Qin, P.; Han, T.; Zhao, D. A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Talanta 2017, 167, 94–102. [Google Scholar] [CrossRef]
- Li, R.; Feng, Y.; Pan, G.; Liu, L. Advances in Molecularly Imprinting Technology for Bioanalytical Applications. Sensors 2019, 19, 177. [Google Scholar] [CrossRef]
- Gal, J.; Cintas, P. Early history of the recognition of molecular biochirality. Top. Curr. Chem. 2013, 333, 1–40. [Google Scholar] [CrossRef]
- Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors 2014, 14, 13863–13912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Water-compatible molecularly imprinted polymers: Promising synthetic substitutes for biological receptors. Polymer 2014, 55, 699–714. [Google Scholar] [CrossRef]
- Curcio, M.; Puoci, F.; Cirillo, G.; Iemma, F.; Spizzirri, U.G.; Picci, N. Selective determination of melamine in aqueous medium by molecularly imprinted solid phase extraction. J. Agric. Food Chem. 2010, 58, 11883–11887. [Google Scholar] [CrossRef] [PubMed]
- Dolai, S.; Shi, W.; Mondal, B.; Raja, K. Synthesis of drug/dye-incorporated polymer-protein hybrids. Methods Mol. Biol. 2011, 751, 29–42. [Google Scholar] [CrossRef] [PubMed]
Media | % Fat | % Protein | % Sugar | Signal *[Hz] |
---|---|---|---|---|
Water | 0 | 0 | 0 | 1150 |
Whey 1:10 | 0.01 | 0.06 | 0.41 | 950 |
Milk 1:10 | 0.05 | 0.35 | 0.49 | 30 |
Whey ** | 0.1 | 0.6 | 4.1 | 370 |
Milk ** | 0.5 | 3.5 | 4.9 | 0 |
Protein Concentration [%] | BSA/Melamine [−Hz] | Casein/Melamine [−Hz] |
---|---|---|
0.0 | 970 | 1345 |
0.5 | 880 | 754 |
1 | 640 | 555 |
1.75 | 430 | 454 |
2.5 | 388 | 407 |
3.5 | 239 | 348 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeilinger, M.; Sussitz, H.; Cuypers, W.; Jungmann, C.; Lieberzeit, P. Mass-Sensitive Sensing of Melamine in Dairy Products with Molecularly Imprinted Polymers: Matrix Challenges. Sensors 2019, 19, 2366. https://doi.org/10.3390/s19102366
Zeilinger M, Sussitz H, Cuypers W, Jungmann C, Lieberzeit P. Mass-Sensitive Sensing of Melamine in Dairy Products with Molecularly Imprinted Polymers: Matrix Challenges. Sensors. 2019; 19(10):2366. https://doi.org/10.3390/s19102366
Chicago/Turabian StyleZeilinger, Martin, Hermann Sussitz, Wim Cuypers, Christoph Jungmann, and Peter Lieberzeit. 2019. "Mass-Sensitive Sensing of Melamine in Dairy Products with Molecularly Imprinted Polymers: Matrix Challenges" Sensors 19, no. 10: 2366. https://doi.org/10.3390/s19102366
APA StyleZeilinger, M., Sussitz, H., Cuypers, W., Jungmann, C., & Lieberzeit, P. (2019). Mass-Sensitive Sensing of Melamine in Dairy Products with Molecularly Imprinted Polymers: Matrix Challenges. Sensors, 19(10), 2366. https://doi.org/10.3390/s19102366