Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes †
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Dielectric Relaxation Measurements
2.2.2. Characterization of Open-Ended Coaxial Electrodes
2.2.3. Fractal Analysis of the Dielectric Relaxation Process
3. Results and Discussion
3.1. Field Patterns of Open-Ended Coaxial Electrodes
3.2. Fractal Analysis with τ − β Diagram
3.3. Fractal Analysis Dependent on the Scale of Observation
3.4. Application of the Fractal Analysis for Solvent Molecules in Gel Materials
3.5. Application of the Fractal Analysis as a Simple Image Analysis
3.6. Application of the Fractal Analysis for Biological Materials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaatze, U. Dielectric and structural relaxation in water and some monohydric alcohols. J. Chem. Phys. 2017, 147, 024502. [Google Scholar] [CrossRef] [PubMed]
- Shinyashiki, N.; Imoto, D.; Yagihara, S. Broadband Dielectric Study of Dynamics of Polymer and Solvent in Poly (vinyl pyrrolidone)/Normal Alcohol Mixtures. J. Phys. Chem. B 2007, 111, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Yagihara, S. Dynamics of water, biomaterials, and skin investigated by means of dielectric relaxation spectroscopy. In Nano/Micro Science and Technology in Biorheology: Principles, Methods, and Applications; Dobashi, T., Kita, R., Eds.; Springer: Berlin, Germany, 2015; Chapter 8; pp. 183–213. [Google Scholar]
- Yagihara, S.; Kita, R.; Shinyashiki, N.; Fukuzaki, M.; Shoji, K.; Saito, T.; Masuda, H.; Kawaguchi, T.; Saito, H.; Maruyama, Y.; et al. Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems. In Proceedings of the 12th International Conference on Electromagnetic Wave Interaction with Water and Moist Substances (ISEMA), Lublin, Poland, 4–7 June 2018; Wojciech, S., Ed.; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Kaatze, U. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data 1989, 34, 371–374. [Google Scholar] [CrossRef]
- Buchner, R.; Barthel, J.; Stauber, J. The dielectric relaxation of water between 0 °C and 35 °C. Chem. Phys. Lett. 1999, 306, 57–63. [Google Scholar] [CrossRef]
- Fukasawa, T.; Sato, T.; Watanabe, J.; Hama, Y.; Kunz, W.; Buchner, R. Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys. Rev. Lett. 2005, 95, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Schroedle, S.; Hefter, G.; Buchner, R. Dielectric spectroscopy of hydrogen bond dynamics and microheterogenity of water-dioxane mixtures. J. Phys. Chem. 2007, 111, 5946–5955. [Google Scholar] [CrossRef]
- Yagihara, S.; Miura, N.; Hayashi, Y.; Miyairi, H.; Asano, M.; Yamada, G.; Shinyashiki, N.; Mashimo, S.; Umehara, T.; Tokita, M.; et al. Microwave Dielectric Study on Water Structure and Physical Properties of Aqueous Systems Using Time Domain Reflectometry with Flat-End Cells. Subsurf. Sens. Technol. Appl. 2001, 2, 15–29. [Google Scholar] [CrossRef]
- Ryabov, Y.E.; Feldman, Y.; Shinyashiki, N.; Yagihara, S. The symmetric broadening of the water relaxation peak in polymer–water mixtures and its relationship to the hydrophilic and hydrophobic properties of polymers. J. Chem. Phys. 2002, 116, 8610–8615. [Google Scholar] [CrossRef]
- Puzenko, A.; Ishai, P.B.; Feldman, Y. Cole-Cole Broadening in Dielectric Relaxation and Strange Kinetics. Phys. Rev. Lett. 2010, 105, 037601. [Google Scholar] [CrossRef]
- Feldman, Y.; Puzenko, A.; Ishai, P.B.; Levy, E. Dielectric Relaxation of Water in Complex Systems. In Recent Advances in Broadband Dielectric Spectroscopy; Kalmykov, Y.P., Ed.; Springer: Berlin, Germany, 2013; Chapter 1; pp. 1–18. [Google Scholar]
- Asami, K.; Yonezawa, T. Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz. Biophys. J. 1996, 71, 2192–2200. [Google Scholar] [CrossRef] [Green Version]
- The animal experiments were implemented under the approval of the Institutional Animal Care and Use Committee of the Isehara Campus, Tokai University School of Medicine (No. 174013, No. 185042).
- Cole, R.H. Evaluation of dielectric behavior by time domain spectroscopy. I. Dielectric response by real time analysis. J. Phys. Chem. 1975, 79, 1459–1469. [Google Scholar] [CrossRef]
- Cole, R.H. Evaluation of dielectric behavior by time domain spectroscopy. II. Complex permittivity. J. Phys. Chem. 1975, 79, 1469–1474. [Google Scholar] [CrossRef]
- Cole, R.H.; Mashimo, S.; Winsor IV, P. Evaluation of dielectric behavior by time domain spectroscopy. III. Precision difference methods. J. Phys. Chem. 1980, 84, 786–793. [Google Scholar] [CrossRef]
- Mashimo, S.; Umehara, T.; Ota, T.; Kuwabara, S.; Shinyashiki, N.; Yagihara, S. Evaluation of complex permittivity of aqueous solution by time domain reflectometry. J. Mol. Liq. 1987, 36, 135–151. [Google Scholar] [CrossRef]
- Cole, R.H.; Berberian, J.G.; Mashimo, S.; Chryssikos, G.; Burns, A.; Tombari, E. Time domain reflection methods for dielectric measurements to 10 GHz. J. Appl. Phys. 1989, 66, 793–802. [Google Scholar] [CrossRef]
- Nozaki, R.; Bose, T.K. Broadband complex permittivity measurements by time-domain spectroscopy. IEEE Trans. Instrum. Meas. 1990, 39, 945–951. [Google Scholar] [CrossRef]
- Saito, H.; (Tokai University, Hiratsuka, Kanagawa, Japan). Personal communication, 2019.
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Davidson, D.W.; Cole, R.H. Dielectric Relaxation in Glycerine. J. Chem. Phys. 1950, 18, 1417–1417. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341. [Google Scholar] [CrossRef]
- Debye, P. Zur theorie der anomalen dispersion im gebiete der langwelligen elektrischen strahlung. Verh. Dtsch. Phys. Ges. 1913, 15, 777–793. [Google Scholar]
- Shinyashiki, N.; Sudo, S.; Abe, W.; Yagihara, S. Shape of Dielectric Relaxation Curves of Ethylene Glycol Oligomer-Water System. J. Chem. Phys. 1998, 109, 9843–9847. [Google Scholar] [CrossRef]
- Mashimo, S.; Nozaki, R.; Yagihara, S.; Takeishi, S. Chain connectivity Dielectric relaxation of poly (vinyl acetate). J. Chem. Phys. 1982, 77, 6259–6262. [Google Scholar] [CrossRef]
- Fujiwara, S.; Yonezawa, F. Anomalous relaxation in fractal and disordered systems. J. Non-Cryst. Solids 1996, 198–200 (Pt 1), 507–511. [Google Scholar] [CrossRef]
- Shinyashiki, N.; Yagihara, S.; Arita, I.; Mashimo, S. Dynamics of Water in a Polymer Matrix Studied by a Microwave Dielectric Measurement. J. Phys. Chem. B 1998, 102, 3249–3251. [Google Scholar] [CrossRef]
- Mashimo, S.; Miura, N.; Umehara, T. The structure of water determined by microwave dielectric study on water mixtures with glucose, polysaccharides, and L.-ascorbic Acid. J. Chem. Phys. 1992, 97, 6759–6765. [Google Scholar] [CrossRef]
- Kita, R.; Kaku, T.; Ohashi, H.; Kurosu, T.; Iida, M.; Yagihara, S.; Dobashi, T. Thermally induced coupling of phase separation and gelation in an aqueous solution of hydroxypropylmethylcellulose (HPMC). Phys. A Stat. Mech. Its Appl. 2003, 319, 56–64. [Google Scholar] [CrossRef]
- Shinyashiki, N.; Asaka, N.; Mashimo, S.; Yagihara, S.; Sasaki, N. Microwave Dielectric Study on Hydration of Moist Collagen. Biopolymers 1990, 29, 1185–1191. [Google Scholar] [CrossRef]
- Hayashi, Y.; Shinyashiki, N.; Yagihara, S. Dynamical structure of water around biopolymers investigated by microwave dielectric measurements via time domain reflectometry. J. Non-Crist Solids 2002, 305, 328–332. [Google Scholar] [CrossRef]
- Miura, N.; Yagihara, S.; Mashimo, S. Microwave Dielectric Properties of Solid and Liquid Foods Investigated by TDR. J. Food Sci. 2003, 68, 1396–1403. [Google Scholar] [CrossRef]
- Miura, N.; Asaka, N.; Shinyashiki, N.; Mashimo, S. Microwave Dielectric Study on Bound Water of Globule Proteins in Aqueous Solution. Biopolymers 1994, 34, 357–364. [Google Scholar] [CrossRef]
- Maruyama, Y.; Numamoto, Y.; Saito, H.; Kita, R.; Shinyashiki, N.; Yagihara, S.; Fukuzaki, M. Complementary analyses of fractal and dynamic water structures in protein–water mixtures and cheeses. Colloids Surf. A Physicochem. Eng. Asp. 2014, 440, 42–48. [Google Scholar] [CrossRef]
- Abe, F.; Nishi, A.; Saito, H.; Asano, M.; Watanabe, S.; Kita, R.; Shinyashiki, N.; Yagihara, S.; Fukuzaki, M.; Sudo, S.; et al. Dielectric study on hierarchical water structures restricted in cement and wood materials. Meas. Sci. Technol. 2017, 28, 044008. [Google Scholar] [CrossRef]
- Miyairi, H.; Yamada, T.; Yamada, G.; Sakai, T.; Shinyashiki, N.; Yagihara, S.; Masayuki, T. Dielectric Study on Volume Phase Transition of PAAm Gel in Acetone-Water System. Rep. Progr. Polym. Phys. Jpn. 1999, 42, 395–398. [Google Scholar]
- Yamada, G.; Hashimoto, T.; Morita, T.; Shinyashiki, N.; Yagihara, S.; Tokita, M. Dielectric Study on Dynamics for Volume Phase Transition of PAAm Gel in Acetone-Water System. Trans. Mater. Res. Soc. Jpn 2001, 26, 701–704. [Google Scholar]
- Hayashi, Y.; Miura, N.; Shinyashiki, N.; Yagihara, S.; Mashimo, S. Globule-Coil Transition of Denatured Globular Protein Investigated by a Microwave Dielectric Technique. Biopolymers 2000, 54, 388–397. [Google Scholar] [CrossRef]
- Kishikawa, J.; Kishikawa, Y.; Seki, Y.; Shingai, K.; Kita, R.; Shinyashiki, N.; Yagihara, S. Dielectric Relaxation for Studying Molecular Dynamics of Pullulan in Water. J. Phys. Chem. 2013, B117, 9034–9041. [Google Scholar] [CrossRef] [PubMed]
- Miyairi, H.; Shinyashiki, N.; Yagihara, S.; Nagahama, T. Dielectric Relaxation of Dipalmitoyl-Phosphatidylcholine Liposome in Aqueous Solution. Rep. Progr. Polym. Phys. Jpn. 1997, 40, 621–624. [Google Scholar]
- Yagihara, S.; Oyama, M.; Inoue, A.; Asano, M.; Sudo, S.; Shinyashiki, N. Dielectric relaxation measurement and analysis of restricted water structure in rice kernels. Meas. Sci. Technol. 2007, 18, 983–990. [Google Scholar] [CrossRef]
- Saito, H.; Kato, S.; Matsumoto, K.; Umino, Y.; Kita, R.; Shinyashiki, N.; Yagihara, S.; Fukuzaki, M.; Tokita, M. Dynamic behaviors of solvent molecules restricted in poly (acryl amide) gels analyzed by dielectric and diffusion NMR spectroscopy. Gels 2018, 4, 56. [Google Scholar] [CrossRef]
- Tanaka, T. Collapse of gels and the critical endpoint. Phys. Rev. Lett. 1978, 40, 820. [Google Scholar] [CrossRef]
- Tanaka, T.; Fillmore, D.J. Kinetics of swelling of gels. J. Chem. Phys. 1979, 70, 1214–1218. [Google Scholar] [CrossRef]
- Tokita, M.; Miyoshi, T.; Takegoshi, K.; Hikichi, K. Probe diffusion in gels. Phys. Rev. E 1996, 53, 1823. [Google Scholar] [CrossRef]
- Tokita, M. Transport phenomena in gel. Gels 2016, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, S.; Ando, I. A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin—Echo 1H NMR. Macromolecules 1996, 29, 7136–7140. [Google Scholar] [CrossRef]
- Matsukawa, S.; Yasunaga, H.; Zhao, C.; Kuroki, S.; Kurosu, H.; Ando, I. Diffusion processes in polymer gels as studied by pulsed field-gradient spin-echo NMR spectroscopy. Prog. Polym. Sci. 1999, 24, 995–1044. [Google Scholar] [CrossRef]
- Asami, K. Dielectric Behavior of Yeast Cell Suspensions: Effects of Some Chemical Agents and Physical Treatments on the Plasma Membranes and the Cytoplasms. Bull. Inst. Chem. Res. Kyoto Univ. 1977, 55, 283–309. [Google Scholar]
Various Aqueous Materials | Fractal Dimension, D |
---|---|
Proteins | 0.10 ± 92.4 |
Ovalbumin | 0.16 ± 1.49 |
glass-egg | 1.05 ± 0.40 |
Gelatin | 1.77 ± 0.16 |
Collagen | 1.74 ± 0.04 |
HPMC | 1.57 ± 0.04 |
Glucose | 0.78 ± 0.31 |
PAAm | 0.13 ± 0.40 |
PAA | 0.05 ± 0.70 |
PEI | 1.33 ± 0.02 |
PAlA | 1.34 ± 0.00 |
PVA | 1.44 ± 0.15 |
PVP | 0.90 ± 0.12 |
PVME | 1.19 ± 0.19 |
PEG | 1.44 ± 0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagihara, S.; Kita, R.; Shinyashiki, N.; Saito, H.; Maruyama, Y.; Kawaguchi, T.; Shoji, K.; Saito, T.; Aoyama, T.; Shimazaki, K.; et al. Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes. Sensors 2019, 19, 2606. https://doi.org/10.3390/s19112606
Yagihara S, Kita R, Shinyashiki N, Saito H, Maruyama Y, Kawaguchi T, Shoji K, Saito T, Aoyama T, Shimazaki K, et al. Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes. Sensors. 2019; 19(11):2606. https://doi.org/10.3390/s19112606
Chicago/Turabian StyleYagihara, Shin, Rio Kita, Naoki Shinyashiki, Hironobu Saito, Yuko Maruyama, Tsubasa Kawaguchi, Kohei Shoji, Tetsuya Saito, Tsuyoshi Aoyama, Ko Shimazaki, and et al. 2019. "Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes" Sensors 19, no. 11: 2606. https://doi.org/10.3390/s19112606
APA StyleYagihara, S., Kita, R., Shinyashiki, N., Saito, H., Maruyama, Y., Kawaguchi, T., Shoji, K., Saito, T., Aoyama, T., Shimazaki, K., Matsumoto, K., Fukuzaki, M., Masuda, H., Hiraiwa, S., Asami, K., & Tokita, M. (2019). Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes. Sensors, 19(11), 2606. https://doi.org/10.3390/s19112606