A Low-Cost Time-Correlated Single Photon Counting Portable DNA Analyzer
Abstract
:1. Introduction
2. System Architecture
3. DNA Detection Chemistry
- 15 DNA: 5′-CTG AGA CTG GAA TGA-3′
- 15 complimentary DNA: 5′-TCA TTC CAG TCT CAG-3′
4. System Implementation
4.1. Optics Implementation
4.1.1. Excitation Source
4.1.2. Photon Detector
4.1.3. Optical Components
4.2. Electronics Implementation
4.2.1. Time-to-digital Conversion Module
4.2.2. MCU
4.2.3. User Interface
5. Results
5.1. Electronical Characteristics
5.2. Validation of Emission Filtering
5.3. DNA Detection
5.4. Fluorescence Lifetime Extraction
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deveson, I.W.; Madala, B.S.; Blackburn, J.; Barker, C.; Wong, T.; Barton, K.M.; Smith, M.A.; Watkins, D.N.; Mercer, T.R. Chiral DNA sequences as commutable controls for clinical genomics. Nat. Commun. 2019, 10, 1342. [Google Scholar] [CrossRef] [PubMed]
- Sina, A.A.I.; Carrascosa, L.G.; Liang, Z.; Grewal, Y.S.; Wardiana, A.; Shiddiky, M.J.A.; Gardiner, R.A.; Samaratunga, H.; Gandhi, M.K.; Scott, R.J.; et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat. Commun. 2018, 9, 4915. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Tiwari, N.; Munde, M. A Comprehensive Biophysical Analysis of the Effect of DNA Binding Drugs on Protamine-induced DNA Condensation. Sci. Rep. 2019, 9, 5891. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Shiraishi, M.; Tsuchihashi, K.; Takatsuka, R.; Yamamoto, J.; Kuraoka, I.; Iwai, S. Fluorescence detection of DNA mismatch repair in human cells. Sci. Rep. 2018, 8, 12181. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, B.S.; Yang, K.; Amornkitbamrung, L.; Jang, M.S.; Ku, B.M.; Cho, S.-W.; Lee, J.H.; Bae, H.; Oh, B.-K.; et al. Fluorescence-coded DNA Nanostructure Probe System to Enable Discrimination of Tumor Heterogeneity via a Screening of Dual Intracellular microRNA Signatures in situ. Sci. Rep. 2017, 7, 13499. [Google Scholar] [CrossRef]
- Bose, S. Use of Steady-State and Time-Resolved Fluorescence Spectroscopy as a Tool to Investigate Photophysics of Biologically and Environmentally Relevant Systems; Iowa State University, Digital Repository: Ames, Iowa, 2010. [Google Scholar]
- Kim, Y.-H.; Shin, K.-S.; Kang, J.-Y.; Yang, E.-G.; Paek, K.-K.; Seo, D.-S.; Ju, B.-K. Poly(dimethylsiloxane)-Based Packaging Technique for Microchip Fluorescence Detection System Applications. J. Microelectromech. Syst. 2006, 15, 1152–1158. [Google Scholar] [CrossRef]
- Chediak, J.A.; Luo, Z.; Seo, J.; Cheung, N.; Lee, L.P.; Sands, T.D. Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems. Sens. Actuators Phys. 2004, 111, 1–7. [Google Scholar] [CrossRef]
- Iordanov, V.P.; Bastemeijer, J.; Ishihara, R.; Sarro, P.M.; Bossche, A.; Vellekoop, M.J. Filter-protected photodiodes for high-throughput enzymatic analysis. IEEE Sens. J. 2004, 4, 584–588. [Google Scholar] [CrossRef]
- Maruyama, Y.; Sawada, K.; Takao, H.; Ishida, M. The fabrication of filter-less fluorescence detection sensor array using CMOS image sensor technique. Sens. Actuators Phys. 2006, 128, 66–70. [Google Scholar] [CrossRef]
- Ho, D.; Noor, M.O.; Krull, U.J.; Gulak, G.; Genov, R. CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 643–654. [Google Scholar] [CrossRef]
- Yang, T.; Stavrakis, S.; deMello, A. A High-Sensitivity, Integrated Absorbance and Fluorescence Detection Scheme for Probing Picoliter-Volume Droplets in Segmented Flows. Anal. Chem. 2017, 89, 12880–12887. [Google Scholar] [CrossRef] [PubMed]
- Stott, M.A.; Ganjalizadeh, V.; Olsen, M.H.; Orfila, M.; McMurray, J.; Schmidt, H.; Hawkins, A.R. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing. IEEE J. Quantum Electron. 2018, 54, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kraiczek, K.G.; Mannion, J.; Post, S.; Tsupryk, A.; Raghunathan, V.; Brennen, R.; Zengerle, R. Micromachined Fused Silica Liquid Core Waveguide Capillary Flow Cell. Anal. Chem. 2016, 88, 1100–1105. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wall, T.A.; Ozcelik, D.; Parks, J.W.; Hawkins, A.R.; Schmidt, H. Electro-optical detection of single λ-DNA. Chem. Commun. 2015, 51, 2084–2087. [Google Scholar] [CrossRef]
- Ray, J.C.; Almas, M.S.; Tao, S. Exciting fluorescence compounds on an optical fiber’s side surface with a liquid core waveguide. Opt. Lett. 2016, 41, 100. [Google Scholar] [CrossRef]
- Tamborini, D.; Buttafava, M.; Ruggeri, A.; Zappa, F. Compact, Low-Power and Fully Reconfigurable 10 ps Resolution, 160 Range, Time-Resolved Single-Photon Counting System. IEEE Sens. J. 2016, 16, 3827–3833. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Y.; Huang, Z.; Gui, H. Instrument for Real-Time Measurement of Low Turbidity by Using Time-Correlated Single Photon Counting Technique. IEEE Trans. Instrum. Meas. 2015, 64, 1075–1083. [Google Scholar] [CrossRef]
- Bouchard, J.; Samson, A.; Lemaire, W.; Paulin, C.; Pratte, J.-F.; Berube-Lauziere, Y.; Fontaine, R. A Low-Cost Time-Correlated Single Photon Counting System for Multiview Time-Domain Diffuse Optical Tomography. IEEE Trans. Instrum. Meas. 2017, 66, 2505–2515. [Google Scholar] [CrossRef]
- Field, R.M.; Realov, S.; Shepard, K.L. A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS. IEEE J. Solid-State Circuits 2014, 49, 867–880. [Google Scholar] [CrossRef]
- Feng, X.J.; Wu, P.L.; Bolze, F.; Leung, H.W.C.; Li, K.F.; Mak, N.K.; Kwong, D.W.J.; Nicoud, J.-F.; Cheah, K.W.; Wong, M.S. Cyanines as New Fluorescent Probes for DNA Detection and Two-Photon Excited Bioimaging. Org. Lett. 2010, 12, 2194–2197. [Google Scholar] [CrossRef]
- Chan, M.S.; Tam, D.Y.; Dai, Z.; Liu, L.S.; Ho, J.W.-T.; Chan, M.L.; Xu, D.; Wong, M.S.; Tin, C.; Lo, P.K. Mitochondrial Delivery of Therapeutic Agents by Amphiphilic DNA Nanocarriers. Small 2016, 12, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Fishburn, M.W.; Charbon, E. System Tradeoffs in Gamma-Ray Detection Utilizing SPAD Arrays and Scintillators. IEEE Trans. Nucl. Sci. 2010, 57, 2549–2557. [Google Scholar] [CrossRef]
- Liebert, A.; Wabnitz, H.; Grosenick, D.; Macdonald, R. Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media. J. Biomed. Opt. 2003, 8, 512. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yan, W.; Ho, D. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics. Sensors 2017, 17, 2800. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Advanced Time-Correlated Single Photon Counting Techniques; Springer Series in Chemical Physics; Springer: Berlin, Germany; New York, NY, USA, 2005; ISBN 978-3-540-26047-9. [Google Scholar]
- Patting, M.; Reisch, P.; Sackrow, M.; Dowler, R.; Koenig, M.; Wahl, M. Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates. Opt. Eng. 2018, 57, 1. [Google Scholar] [CrossRef] [Green Version]
- Dziuba, D.; Jurkiewicz, P.; Cebecauer, M.; Hof, M.; Hocek, M. A Rotational BODIPY Nucleotide: An Environment-Sensitive Fluorescence-Lifetime Probe for DNA Interactions and Applications in Live-Cell Microscopy. Angew. Chem. Int. Ed. 2016, 55, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-R.; Kim, D.-R.; Lee, T.; Yhee, J.Y.; Kim, B.-S.; Kwon, I.C.; Ahn, D.-R. Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem. Commun. 2013, 49, 2010. [Google Scholar] [CrossRef]
- Gansen, A.; Felekyan, S.; Kühnemuth, R.; Lehmann, K.; Tóth, K.; Seidel, C.A.M.; Langowski, J. High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nat. Commun. 2018, 9, 4628. [Google Scholar] [CrossRef]
- Cetinkaya, A.; Xiong, J.R.; Vargel, İ.; Kösemehmetoğlu, K.; Canter, H.İ.; Gerdan, Ö.F.; Longo, N.; Alzahrani, A.; Camps, M.P.; Taskiran, E.Z.; et al. Loss-of-Function Mutations in ELMO2 Cause Intraosseous Vascular Malformation by Impeding RAC1 Signaling. Am. J. Hum. Genet. 2016, 99, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hanne, J.; Britton, B.M.; Bennett, J.; Kim, D.; Lee, J.-B.; Fishel, R. Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair. Nature 2016, 539, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Sternberg, S.H.; Fei, J.; Doudna, J.A.; Ha, T. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 2016, 7, 12778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, M.; Liu, L.; Chen, X.; Driscoll, K.I.; Mao, P.; Böhm, S.; Kad, N.M.; Watkins, S.C.; Bernstein, K.A.; Wyrick, J.J.; et al. Single-Molecule Imaging Reveals that Rad4 Employs a Dynamic DNA Damage Recognition Process. Mol. Cell 2016, 64, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Wei, L.; Ho, D. A Low-Cost Time-Correlated Single Photon Counting Portable DNA Analyzer. Sensors 2019, 19, 2838. https://doi.org/10.3390/s19132838
Tian Y, Wei L, Ho D. A Low-Cost Time-Correlated Single Photon Counting Portable DNA Analyzer. Sensors. 2019; 19(13):2838. https://doi.org/10.3390/s19132838
Chicago/Turabian StyleTian, Yi, Liping Wei, and Derek Ho. 2019. "A Low-Cost Time-Correlated Single Photon Counting Portable DNA Analyzer" Sensors 19, no. 13: 2838. https://doi.org/10.3390/s19132838
APA StyleTian, Y., Wei, L., & Ho, D. (2019). A Low-Cost Time-Correlated Single Photon Counting Portable DNA Analyzer. Sensors, 19(13), 2838. https://doi.org/10.3390/s19132838