Review-Microwave Radar Sensing Systems for Search and Rescue Purposes
Abstract
:1. Introduction
2. Background Research and Literature Review
2.1. Hardware Developments
2.2. Signal Processing Techniques
2.3. Problems and Solutions in the Search and Rescue Scenario
3. Classification of Radar Sensors Based on Transmitting Wave Forms
3.1. Single-Tone CW Radar Sensor
CW Radar Topologies
3.2. Frequency Modulation Continuous Wave Radar Sensor
3.3. Hybrid FMCW-CW Radar Sensor
3.4. Stepped-Frequency Continuous Wave Radar
3.5. Random Noise Radar Sensor
3.6. Pulse-Based Radar Sensors
4. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, J.C. Microwave sensing of physiological movement and volume change: A review. Bioelectromagnetics 1992, 13, 557–565. [Google Scholar] [CrossRef]
- Caro, C.; Bloice, J. Contactless apnea detector based on radar. Lancet 1971, 298, 959–961. [Google Scholar] [CrossRef]
- Franks, C.; Brown, B.; Johnston, D. Contactless respiration monitoring of infants. Med. Biol. Eng. 1976, 14, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.S.; Clorfeine, A.S. Respiration Monitor. US Patent 3,993,995, 23 November 1976. [Google Scholar]
- Lee, J.Y.; Lin, J.C. A microcprocessor-based noninvasive arterial pulse wave analyzer. IEEE Trans. Biomed. Eng. 1985, BME-32, 451–455. [Google Scholar] [CrossRef]
- Nowogrodzki, M.; Mawhinney, D.D. Dual Frequency Heart Rate Monitor Utilizing Doppler Radar. US Patent 4,513,748, 30 April 1985. [Google Scholar]
- Schmidt, G.J. Method of and Apparatus for Detecting Living Bodies. US Patent 5,790,032, 4 August 1998. [Google Scholar]
- Geisheimer, J. RVSM [radar vital signs monitor]. IEEE Potentials 1998, 17, 21–24. [Google Scholar] [CrossRef]
- Lemaitre, F.; Poussieres, J.C. Method and System for Sensing and Locating a Person, eg under an Avalanche. US Patent 6,031,482, 29 February 2000. [Google Scholar]
- Sharpe, S.M.; Seals, J.; MacDonald, A.H.; Crowgey, S.R. Non-Contact Vital Signs Monitor. US Patent 4,958,638, 25 September 1990. [Google Scholar]
- Sterzer, F. Apparatus and Method for Monitoring the Waveform of Cyclic Movement within the Thorax of an Individual. US Patent 4,967,751, 6 November 1990. [Google Scholar]
- Mcewan, T.E. Ultra-Wideband Radar Motion Sensor. US Patent 5,361,070, 1 November 1994. [Google Scholar]
- Hablov, D.V.; Fisun, O.I.; Lupichev, L.N.; Osipov, V.V.; Schestiperov, V.A.; Schimko, R. Electronic Life Detection System. US Patent 5,448,501, 5 September 1995. [Google Scholar]
- McEwan, T.E. Body Monitoring and Imaging Apparatus and Method. US Patent 5,573,012, 12 November 1996. [Google Scholar]
- Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251. [Google Scholar] [CrossRef]
- Dinh, T.P.; Perrault, H.; Calabrese, P.; Eberhard, A.; Benchetrit, G. New statistical method for detection and quantification of respiratory sinus arrhythmia. IEEE Trans. Biomed. Eng. 1999, 46, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- McEwan, T.E. Differential Pulse Radar Motion Sensor. US Patent 5,966,090, 12 October 1999. [Google Scholar]
- Teodorescu, H.N.; Mlynek, D.J. Respiration and Movement Monitoring System. US Patent 6,011,477, 4 January 2000. [Google Scholar]
- Geisheimer, J.; Greneker, E. Remote detection of deception using radar vital signs monitor technology. In Proceedings of the IEEE 34th Annual International Carnahan Conference on Security Technology (Cat. No. 00CH37083), Ottawa, ON, Canada, 23–25 October 2000; pp. 170–173. [Google Scholar]
- Corn, S.B. Sleep Apnea Detector System. US Patent 6,062,216, 16 May 2000. [Google Scholar]
- Droitcour, A.; Lubecke, V.; Lin, J.; Boric-Lubecke, O. A microwave radio for Doppler radar sensing of vital signs. In Proceedings of the IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157), Phoenix, AZ, USA, 20–24 May 2001; Volume 1, pp. 175–178. [Google Scholar]
- Staderini, E.M. UWB radars in medicine. IEEE Aerosp. Electron. Syst. Mag. 2002, 17, 13–18. [Google Scholar] [CrossRef]
- Lubecke, V.; Boric-Lubecke, O.; Beck, E. A compact low-cost add-on module for Doppler radar sensing of vital signs using a wireless communications terminal. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278), Seattle, WA, USA, 2–7 June 2002; Volume 3, pp. 1767–1770. [Google Scholar]
- Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J. 0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radars for remote sensing of vital signs. In Proceedings of the IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No. 02CH37315), San Francisco, CA, USA, 7 February 2002; Volume 1, pp. 348–349. [Google Scholar]
- Yin, Y.; Qian, J.; Lu, J.; Huang, Y. On the operation mechanism of the microwave sensor for measuring human heartbeats and respirations. In Proceedings of the SENSORS, 2003 IEEE, Toronto, ON, Canada, 22–24 October 2003; Volume 1, pp. 565–568. [Google Scholar]
- Yun, X.; Johnston, R.; Fear, E. Radar-based microwave imaging for breast cancer detection: Tumor sensing with cross-polarized reflections. In Proceedings of the IEEE Antennas and Propagation Society Symposium, 2004, Monterey, CA, USA, 20–25 June 2004; Volume 3, pp. 2432–2435. [Google Scholar]
- Li, S. Vehicle Occupant Detection System and Method Using Radar Motion Sensor. US Patent 6,753,780, 22 June 2004. [Google Scholar]
- Yun, X.; Fear, E.C.; Johnston, R.H. Compact antenna for radar-based breast cancer detection. IEEE Trans. Antennas Propag. 2005, 53, 2374–2380. [Google Scholar]
- Bilich, C.G. Bio-medical sensing using ultra wideband communications and radar technology: A feasibility study. In Proceedings of the Pervasive Health Conference and Workshops, Innsbruck, Austria, 29 November–1 December 2006; pp. 1–9. [Google Scholar]
- Li, C.; Lin, J. Random body movement cancellation in Doppler radar vital sign detection. IEEE Trans. Microw. Theory Tech. 2008, 56, 3143–3152. [Google Scholar]
- Cianca, E.; Gupta, B. FM-UWB for communications and radar in medical applications. Wirel. Pers. Commun. 2009, 51, 793–809. [Google Scholar] [CrossRef]
- Gibbins, D.; Klemm, M.; Craddock, I.J.; Leendertz, J.A.; Preece, A.; Benjamin, R. A comparison of a wide-slot and a stacked patch antenna for the purpose of breast cancer detection. IEEE Trans. Antennas Propag. 2010, 58, 665–674. [Google Scholar] [CrossRef]
- Zito, D.; Pepe, D.; Mincica, M.; Zito, F.; Tognetti, A.; Lanatà, A.; De Rossi, D. SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring. IEEE Trans. Biomed. Circuits Syst. 2011, 5, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Salvador, S.M.; Fear, E.C.; Okoniewski, M.; Matyas, J.R. Exploring joint tissues with microwave imaging. IEEE Trans. Microw. Theory Tech. 2010, 58, 2307–2313. [Google Scholar] [CrossRef]
- Li, X.; Yan, J.; Jalilvand, M.; Zwick, T. A compact double-elliptical slot-antenna for medical applications. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 3677–3680. [Google Scholar]
- Zito, G.A.; Staderini, E.M.; Pisa, S. A twin spiral planar antenna for UWB medical radars. Int. J. Antennas Propag. 2013, 2013, 684185. [Google Scholar] [CrossRef]
- Li, C.; Lubecke, V.M.; Boric-Lubecke, O.; Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Solberg, L.E.; Aardal, Ø.; Berger, T.; Balasingham, I.; Fosse, E.; Hamran, S.E. Experimental investigation into radar-based central blood pressure estimation. IET Radar Sonar Navig. 2015, 9, 145–153. [Google Scholar] [CrossRef]
- Kuo, H.C.; Lin, C.C.; Yu, C.H.; Lo, P.H.; Lyu, J.Y.; Chou, C.C.; Chuang, H.R. A Fully Integrated 60-GHz CMOS Direct-Conversion Doppler Radar RF Sensor With Clutter Canceller for Single-Antenna Noncontact Human Vital-Signs Detection. IEEE Trans. Microw. Theory Tech. 2016, 64, 1018–1028. [Google Scholar] [CrossRef]
- Smith, S.; Narayanan, R.M.; Messaris, E. Medical radar considerations for detecting and monitoring Crohn’s disease. In Proceedings of the Radar Sensor Technology XVIII, Baltimore, MD, USA, 5–9 May 2014; International Society for Optics and Photonics: Bellingham, WA USA, 2014; Volume 9077, p. 90770W. [Google Scholar]
- Pisa, S.; Pittella, E.; Piuzzi, E. A survey of radar systems for medical applications. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 64–81. [Google Scholar] [CrossRef]
- Hall, T.; Lie, D.; Nguyen, T.; Mayeda, J.; Lie, P.; Lopez, J.; Banister, R. Non-contact sensor for long-term continuous vital signs monitoring: A review on intelligent phased-array Doppler sensor design. Sensors 2017, 17. [Google Scholar] [CrossRef]
- Thakur, S.; Abdul, S.; Chiu, H.Y.; Roy, R.; Huang, P.Y.; Malwade, S.; Nursetyo, A.; Li, Y.C. Artificial-intelligence-based prediction of clinical events among hemodialysis patients using non-contact sensor data. Sensors 2018, 18. [Google Scholar] [CrossRef] [PubMed]
- Van Nguyen, T.P.; Tang, L.; Nguyen, D.M.; Hasan, F.; Mukhopadhyay, S. Wide Band Antennae System for Remote Vital Signs Detecting Doppler Radar Sensor. In Modern Sensing Technologies; Springer: Berlin, Germany, 2019; pp. 47–62. [Google Scholar]
- Park, J.; Choi, D.; Park, S. Wireless vital signal detection systems and its applications at 1.9 GHz and 10 GHz [biomedical applications]. In Proceedings of the Digest IEEE Antennas and Propagation Society International Symposium (Cat. No. 03CH37450), Columbus, OH, USA, 22–27 June 2003; Volume 4, pp. 747–750. [Google Scholar]
- Williams, C.R.; Yankielun, N.E. Motion Detection and Alerting System. US Patent 6,700,528, 2 March 2004. [Google Scholar]
- Boric-Lubecke, O.; Lubecke, V.M.; Host-Madsen, A.; Samardzija, D.; Cheung, K. Doppler radar sensing of multiple subjects in single and multiple antenna systems. In Proceedings of the TELSIKS 2005-2005 uth International Conference on Telecommunication in ModernSatellite, Cable and Broadcasting Services, Nis, Serbia, 28–30 September 2005; Volume 1, pp. 7–11. [Google Scholar]
- Greneker, E.F., III; Asbell, O.D.; Geisheimer, J.L. Radar Detection Device Employing a Scanning Antenna System. US Patent 7,199,749, 3 April 2007. [Google Scholar]
- Van, N.T.P.; Tang, L.; Minh, N.D.; Hasan, F.; Mukhopadhyay, S. Extra wide band 3D patch antennae system design for remote vital sign Doppler radar sensor detection. In Proceedings of the Eleventh International Conference on Sensing Technology (ICST), Sydney, NSW, Australia, 4–6 December 2017; pp. 1–5. [Google Scholar]
- Van, N.T.P.; Tang, L.; Singh, A.; Minh, N.D.; Mukhopadhyay, S.C.; Hasan, S.F. Self-Identification Respiratory Disorder Based on Continuous Wave Radar Sensor System. IEEE Access 2019, 7, 40019–40026. [Google Scholar] [CrossRef]
- Budge, M.; Burt, M. Range correlation effects on phase and amplitude noise. In Proceedings of the Southeastcon’93, Proceedings, Charlotte, NC, USA, 4–7 April 1993. [Google Scholar]
- Rostislavovich, O.V.; Saidkhakimovich, I.G. Method for Discovering the Location of a Living Object and Microwave Location Device for Realizing the Same. US Patent 6,208,286, 27 March 2001. [Google Scholar]
- Mahler, M.; Ruob, H.O.; Menzel, W. Radar Sensors to Determine Position and Physiological Parameters of a Person in a Vehicle. In Proceedings of the 32nd European Microwave Conference, Milan, Italy, 23–26 September 2002; pp. 1–4. [Google Scholar]
- Haj-Yousef, Y.M.T. Method and Device for Detecting and Monitoring Concealed Bodies and Objects. US Patent 6,359,597, 19 March 2002. [Google Scholar]
- Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J.; Kovacs, G.T. Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Philadelphia, PA, USA, 8–13 June 2003; Volume 3, pp. 1945–1948. [Google Scholar]
- Venkatesh, S.; Anderson, C.R.; Rivera, N.V.; Buehrer, R.M. Implementation and analysis of respiration-rate estimation using impulse-based UWB. In Proceedings of the MILCOM 2005-2005 IEEE Military Communications Conference, Atlantic City, NJ, USA, 17–20 October 2005; pp. 3314–3320. [Google Scholar]
- Nguyen, D.; Yamada, S.; Park, B.K.; Lubecke, V.; Boric-Lubecke, O.; Host-Madsen, A. Noise considerations for remote detection of life signs with microwave Doppler radar. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1667–1670. [Google Scholar]
- Høst-Madsen, A.; Petrochilos, N.; Boric-Lubecke, O.; Lubecke, V.M.; Park, B.K.; Zhou, Q. Signal processing methods for Doppler radar heart rate monitoring. In Signal Processing Techniques for Knowledge Extraction and Information Fusion; Springer: Berlin, Germany, 2008; pp. 121–140. [Google Scholar]
- Lazaro, A.; Girbau, D.; Villarino, R.; Ramos, A. Vital signs monitoring using impulse based UWB signal. In Proceedings of the 41st European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 135–138. [Google Scholar]
- Gu, C.; Wang, G.; Inoue, T.; Li, C. Doppler radar vital sign detection with random body movement cancellation based on adaptive phase compensation. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar]
- Chioukh, L.; Boutayeb, H.; Deslandes, D.; Wu, K. Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs. IEEE Trans. Microw. Theory Tech. 2014, 62, 1847–1855. [Google Scholar] [CrossRef]
- Kazemi, S.; Ghorbani, A.; Amindavar, H.; Li, C. Cyclostationary approach to Doppler radar heart and respiration rates monitoring with body motion cancellation using Radar Doppler System. Biomed. Signal Process. Control 2014, 13, 79–88. [Google Scholar] [CrossRef]
- Lazaro, A.; Girbau, D.; Villarino, R. Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars. Sensors 2014, 14, 2595–2618. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, H.; Naishadham, K.; Kilic, O.; Fathy, A.E. Phase-Based Methods for Heart Rate Detection Using UWB Impulse Doppler Radar. IEEE Trans. Microw. Theory Tech. 2016, 64, 3319–3331. [Google Scholar] [CrossRef]
- Hu, X.; Jin, T. Short-range vital signs sensing based on EEMD and CWT using IR-UWB radar. Sensors 2016, 16, 2025. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.C.; Liu, J.J.; Xu, W.; Gu, C.; Li, C.; Sarrafzadeh, M. A self-calibrating radar sensor system for measuring vital signs. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 352–363. [Google Scholar] [CrossRef]
- Kazemi, S.; Ghorbani, A.; Amindavar, H.; Morgan, D.R. Vital-sign extraction using bootstrap-based generalized warblet transform in heart and respiration monitoring radar system. IEEE Trans. Instrum. Meas. 2016, 65, 255–263. [Google Scholar] [CrossRef]
- Yan, J.; Hong, H.; Zhao, H.; Li, Y.; Gu, C.; Zhu, X. Through-wall multiple targets vital signs tracking based on VMD algorithm. Sensors 2016, 16, 1293. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, H.; Ye, S.; Fang, G.; Gulliver, T.A. Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digital Signal Process. 2018, 74, 72–93. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, D.; Zhang, Z. Doppler radar vital signs detection method based on higher order cyclostationary. Sensors 2018, 18, 47. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Lian, S.; Sun, Y.; Zhang, L. Doppler Radar Vital Sign Detection Based on Complex Continuous Basis Pursuit Algorithm. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018; pp. 2371–2377. [Google Scholar]
- Li, M.; Lin, J. Wavelet-transform-based data-length-variation technique for fast heart rate detection using 5.8-GHz CW Doppler radar. IEEE Trans. Microw. Theory Tech. 2018, 66, 568–576. [Google Scholar] [CrossRef]
- Van, N.P.; Tang, L.; Tran, H.; Hasan, F.; Minh, N.D.; Mukhopadhyay, S. Outage Probability of Vital Signs Detecting Radar Sensor System. In Proceedings of the12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018; pp. 358–362. [Google Scholar]
- Phuoc Van, N.; Tang, L.; Mukhopadhyay, S.; Nguyen, D.; Hasan, F. Probabilities of false alarm for vital sign detection on the basis of a Doppler radar system. Sensors 2018, 18, 694. [Google Scholar] [CrossRef] [PubMed]
- Boric-Lubecke, O.; Droitcour, A.D.; Lubecke, V.M.; Lin, J.; Kovacs, G.T. Wireless IC Doppler radars for sensing of heart and respiration activity. In Proceedings of the 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, (TELSIKS 2003), Nis, Yugoslavia, 1–3 October 2003; Volume 1, pp. 337–344. [Google Scholar]
- Droitcour, A.; BORIC-LUBECKE, O.; Lubecke, V.M.; Lin, J.; KOVACS, G.T. Chest motion sensing with modified silicon base station chips. IEICE Trans. Electron. 2004, 87, 1524–1531. [Google Scholar]
- Lin, J.; Li, C. Wireless non-contact detection of heartbeat and respiration using low-power microwave radar sensor. In Proceedings of the Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007; pp. 1–4. [Google Scholar]
- Cheng, J.H.; Lin, Y.H.; Lin, W.J.; Tsai, J.H.; Huang, T.W.; Wang, H. An integrated dual-band transmitter for vital sign detection radar applications in 0.18-μm CMOS. In Proceedings of the 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October 2016; pp. 109–112. [Google Scholar]
- Chou, C.C.; Lai, W.C.; Hsiao, Y.K.; Chuang, H.R. 60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing. IEEE Trans. Microw. Theory Tech. 2018, 66, 1635–1643. [Google Scholar] [CrossRef]
- Chan, C.H.; Chou, C.C.; Chuang, H.R. Integrated packaging design of low-cost bondwire interconnection for 60-GHz CMOS vital-signs radar sensor chip with millimeter-wave planar antenna. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 177–185. [Google Scholar] [CrossRef]
- Tseng, C.H.; Lin, Y.H. 24-GHz Self-Injection-Locked Vital-Sign Radar Sensor With CMOS Injection-Locked Frequency Divider Based on Push–Push Oscillator Topology. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1053–1055. [Google Scholar] [CrossRef]
- Chen, K.M.; Huang, Y.; Zhang, J.; Norman, A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. Biomed. Eng. 2000, 47, 105–114. [Google Scholar] [CrossRef]
- Lubecke, V.M.; Boric-Lubecke, O.; Host-Madsen, A.; Fathy, A.E. Through-the-wall radar life detection and monitoring. In Proceedings of the IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 3–8 June 2007; pp. 769–772. [Google Scholar]
- Akiyama, I.; Yoshizumi, N.; Ohya, A.; Aoki, Y.; Matsuno, F. Search for survivors buried in rubble by rescue radar with array antennas-Extraction of respiratory fluctuation. In Proceedings of the IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy, 27–29 September 2007; pp. 1–6. [Google Scholar]
- Li, C.; Yu, X.; Lee, C.M.; Li, D.; Ran, L.; Lin, J. High-Sensitivity Software-Configurable 5.8-GHz Radar Sensor Receiver Chip in 0.13-μm CMOS for Noncontact Vital Sign Detection. IEEE Trans. Microw. Theory Tech. 2010, 58, 1410–1419. [Google Scholar]
- Girbau, D.; Lazaro, A.; Ramos, A.; Villarino, R. Remote sensing of vital signs using a Doppler radar and diversity to overcome null detection. IEEE Sens. J. 2012, 12, 512–518. [Google Scholar] [CrossRef]
- Li, J.; Zeng, Z.; Sun, J.; Liu, F. Through-wall detection of human being’s movement by UWB radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 1079–1083. [Google Scholar] [CrossRef]
- Wang, F.K.; Horng, T.S.; Peng, K.C.; Jau, J.K.; Li, J.Y.; Chen, C.C. Single-antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation. IEEE Trans. Microw. Theory Tech. 2011, 59, 3577–3587. [Google Scholar] [CrossRef]
- Yu, X.; Li, C.; Lin, J. Two-dimensional noncontact vital sign detection using Doppler radar array approach. In Proceedings of the IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–4. [Google Scholar]
- Kao, T.Y.J.; Yan, Y.; Shen, T.M.; Chen, A.Y.K.; Lin, J. Design and analysis of a 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection. IEEE Trans. Microw. Theory Tech. 2013, 61, 1649–1659. [Google Scholar] [CrossRef]
- Vinci, G.; Lindner, S.; Barbon, F.; Mann, S.; Hofmann, M.; Duda, A.; Weigel, R.; Koelpin, A. Six-port radar sensor for remote respiration rate and heartbeat vital-sign monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2093–2100. [Google Scholar] [CrossRef]
- JalaliBidgoli, F.; Moghadami, S.; Ardalan, S. A compact portable microwave life-detection device for finding survivors. IEEE Embed. Syst. Lett. 2016, 8, 10–13. [Google Scholar] [CrossRef]
- Van Nguyen, T.P.; Tang, L.; Hasan, F.; Minh, N.D.; Mukhopadhyay, S. Nature-inspired sensor system for vital signs detection. Sens. Actuators A Phys. 2018, 281, 76–83. [Google Scholar] [CrossRef]
- Liang, X.; Deng, J.; Zhang, H.; Gulliver, T.A. Ultra-wideband impulse radar through-wall detection of vital signs. Sci. Rep. 2018, 8, 13367. [Google Scholar] [CrossRef]
- Franks, C.; Watson, J.; Brown, B.; Foster, E. Respiratory patterns and risk of sudden unexpected death in infancy. Arch. Dis. Child. 1980, 55, 595–599. [Google Scholar] [CrossRef]
- Li, C.; Lin, J.; Xiao, Y. Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2235–2238. [Google Scholar]
- Staderini, E.M. An UWB radar based stealthy ‘Lie Detector’. In Ultra-Wideband, Short-Pulse Electromagnetics 6; Springer: Berlin, Germany, 2003; pp. 537–552. [Google Scholar]
- Tseng, S.T.; Kao, Y.H.; Peng, C.C.; Liu, J.Y.; Chu, S.C.; Hong, G.F.; Hsieh, C.H.; Hsu, K.T.; Liu, W.T.; Huang, Y.H.; et al. A 65-nm CMOS low-power impulse radar system for human respiratory feature extraction and diagnosis on respiratory diseases. IEEE Trans. Microw. Theory Tech. 2016, 64, 1029–1041. [Google Scholar] [CrossRef]
- Huang, T.Y.; Lin, J.; Hayward, L. Non-invasive measurement of laboratory rat’s cardiorespiratory movement using a 60-GHz radar and nonlinear Doppler phase modulation. In Proceedings of the IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Taipei, Taiwan, 21–23 September 2015; pp. 83–84. [Google Scholar]
- Li, C.; Peng, Z.; Huang, T.Y.; Fan, T.; Wang, F.K.; Horng, T.S.; Muñoz-Ferreras, J.M.; Gómez-García, R.; Ran, L.; Lin, J. A review on recent progress of portable short-range noncontact microwave radar systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 1692–1706. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Li, D.; Ran, L.; Lin, J. Software configurable 58 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, 7–9 June 2009; pp. 97–100. [Google Scholar]
- Andersen, N.; Granhaug, K.; Michaelsen, J.A.; Bagga, S.; Hjortland, H.A.; Knutsen, M.R.; Lande, T.S.; Wisland, D.T. A 118-mw 23.3-gs/s dual-band 7.3-ghz and 8.7-ghz impulse-based direct rf sampling radar soc in 55-nm cmos. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 138–139. [Google Scholar]
- Lee, Y.S.; Pathirana, P.N.; Steinfort, C.L.; Caelli, T. Monitoring and analysis of respiratory patterns using microwave Doppler radar. IEEE J. Trans. Eng. Health Med. 2014, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Crocco, L.; Ferrara, V. A review on ground penetrating radar technology for the detection of buried or trapped victims. In Proceedings of the International Conference on Collaboration Technologies and Systems (CTS), Minneapolis, MN, USA, 19–23 May 2014; pp. 535–540. [Google Scholar]
- Loschonsky, M.; Feige, C.; Rogall, O.; Fisun, S.; Reindl, L. Detection technology for trapped and buried people. In Proceedings of the IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID, Cavtat, Croatia, 24–25 September 2009; pp. 1–6. [Google Scholar]
- Baldi, M.; Cerri, G.; Chiaraluce, F.; Eusebi, L.; Russo, P. Non-invasive UWB sensing of astronauts’ breathing activity. Sensors 2015, 15, 565–591. [Google Scholar] [CrossRef] [PubMed]
- Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Reddy, K.N.; Reddy, K.A. Estimation of respiratory rate from principal components of photoplethysmographic signals. In Proceedings of the IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 311–314. [Google Scholar]
- Madhav, K.V.; Ram, M.R.; Krishna, E.H.; Komalla, N.R.; Reddy, K.A. Robust extraction of respiratory activity from PPG signals using modified MSPCA. IEEE Trans. Instrum. Meas. 2013, 62, 1094–1106. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Yuan, Y. An EMD Based Breathing and Heartbeat Monitoring System. In Proceedings of the 7th Asia Modelling Symposium, Hong Kong, China, 23–25 July 2013; pp. 55–58. [Google Scholar]
- Li, C.; Lin, J. Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 567–570. [Google Scholar]
- Anishchenko, L.; Razevig, V.; Chizh, M. Blind separation of several biological objects respiration patterns by means of a step-frequency continuous-wave bioradar. In Proceedings of the IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS), Tel-Aviv, Israel, 13–15 November 2017; pp. 1–4. [Google Scholar]
- Lee, T.W. Independent Component Analysis: Theory and Applications. Ph.D. Thesis, University of Oxford, Oxford, UK, 1997. [Google Scholar]
- Droitcour, A.D.; Boric-Lubecke, O.; Lubecke, V.M.; Lin, J.; Kovacs, G.T. Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 2004, 52, 838–848. [Google Scholar] [CrossRef]
- Wang, F.K.; Fang, C.H.; Horng, T.S.; Peng, K.C.; Li, J.Y.; Chen, C.C. Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q receivers with arctangent demodulation. IEEE Trans. Microw. Theory Tech. 2013, 61, 4689–4699. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, J.; Host-Madsen, A.; Boric-Lubecke, O.; Lubecke, V. Detection of multiple heartbeats using Doppler radar. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, Toulouse, France, 14–19 May 2006; Volume 2, p. II. [Google Scholar]
- Li, C.; Cummings, J.; Lam, J.; Graves, E.; Wu, W. Radar remote monitoring of vital signs. IEEE Microw. Mag. 2009, 10, 47–56. [Google Scholar] [CrossRef]
- Peng, Z.; Muñoz-Ferreras, J.M.; Tang, Y.; Liu, C.; Gómez-García, R.; Ran, L.; Li, C. A portable FMCW interferometry radar with programmable low-IF architecture for localization, ISAR imaging, and vital sign tracking. IEEE Trans. Microw. Theory Tech. 2016, 65, 1334–1344. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, T.; Lv, H.; Li, S.; Li, C.; Lu, G.; Yu, X.; Li, Z.; Wang, J. An interference suppression technique for life detection using 5.75-and 35-GHz dual-frequency continuous-wave radar. IEEE Geosci. Remote Sens. Lett. 2014, 12, 482–486. [Google Scholar] [CrossRef]
- Xue, H.; Liu, M.; Zhang, Y.; Liang, F.; Qi, F.; Chen, F.; Lv, H.; Wang, J. An Algorithm Based Wavelet Entropy for Shadowing Effect of Human Detection Using Ultra-Wideband Bio-Radar. Sensors 2017, 17, 2255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Kurata, M.; Inaba, T. FMCW radar for small displacement detection of vital signal using projection matrix method. Int. J. Antennas Propag. 2013, 2013, 571986. [Google Scholar] [CrossRef]
- Ritchie, M.; Ash, M.; Chen, Q.; Chetty, K. Through wall radar classification of human micro-Doppler using singular value decomposition analysis. Sensors 2016, 16, 1401. [Google Scholar] [CrossRef] [PubMed]
- Maaref, N.; Millot, P.; Pichot, C.; Picon, O. FMCW ultra-wideband radar for through-the-wall detection of human beings. In Proceedings of the International Radar Conference “Surveillance for a Safer World” (RADAR 2009), Bordeaux, France, 12–16 October 2009; pp. 1–5. [Google Scholar]
- Wang, G.; Gu, C.; Inoue, T.; Li, C. A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring. IEEE Trans. Microw. Theory Tech. 2014, 62, 2812–2822. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S. Remote detection of human vital sign with stepped-frequency continuous wave radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 775–782. [Google Scholar] [CrossRef]
- Mercuri, M.; Soh, P.J.; Boccia, L.; Schreurs, D.; Vandenbosch, G.A.; Leroux, P.; Amendola, G. Optimized SFCW radar sensor aiming at fall detection in a real room environment. In Proceedings of the IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems, Austin, TX, USA, 20–23 January 2013; pp. 4–6. [Google Scholar]
- Narayanan, R.; Xu, X.; Henning, J. Radar penetration imaging using ultra-wideband (UWB) random noise waveforms. IEE Proc.-Radar Sonar Navig. 2004, 151, 143–148. [Google Scholar] [CrossRef]
- Lai, C.P.; Narayanan, R.M. Ultrawideband random noise radar design for through-wall surveillance. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1716–1730. [Google Scholar] [CrossRef]
- Narayanan, R.M. Through-wall radar imaging using UWB noise waveforms. J. Frankl. Inst. 2008, 345, 659–678. [Google Scholar] [CrossRef]
- Gunasekara, A. Contactless Estimation of Breathing Rate Using UWB Radar. Ph.D. Thesis, Université d’Ottawa/University of Ottawa, Ottawa, ON, Canada, 2017. [Google Scholar]
- Sakkila, L.; Elhillali, Y.; Rivenq, A.; Tatkeu, C.; Rouvaen, J. Short range automotive radar based on UWB pseudo-random coding. In Proceedings of the7th International Conference on ITS Telecommunications, Sophia Antipolis, France, 6–8 June 2007; pp. 1–6. [Google Scholar]
- Sachs, J.; Helbig, M.; Herrmann, R.; Kmec, M.; Schilling, K.; Zaikov, E. Remote vital sign detection for rescue, security, and medical care by ultra-wideband pseudo-noise radar. Ad Hoc Netw. 2014, 13, 42–53. [Google Scholar] [CrossRef]
- Sun, J.; Li, M. Life detection and location methods using UWB impulse radar in a coal mine. Min. Sci. Technol. (China) 2011, 21, 687–691. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Center frequency | 400 MHz |
Transmitted signal amplitude | 50 V |
Pulse repeat frequency (PRF) | 600 kHz |
Number of averaged values (NA) | 30 |
Time window | 124 ns |
Number of samples (M) | 4092 |
Input bandwidth of the analog to digital converter (ADC) | 2.3 GHz |
ADC sample size | 12 bits |
Receiver dynamic range | 72 dB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thi Phuoc Van, N.; Tang, L.; Demir, V.; Hasan, S.F.; Duc Minh, N.; Mukhopadhyay, S. Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors 2019, 19, 2879. https://doi.org/10.3390/s19132879
Thi Phuoc Van N, Tang L, Demir V, Hasan SF, Duc Minh N, Mukhopadhyay S. Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors. 2019; 19(13):2879. https://doi.org/10.3390/s19132879
Chicago/Turabian StyleThi Phuoc Van, Nguyen, Liqiong Tang, Veysel Demir, Syed Faraz Hasan, Nguyen Duc Minh, and Subhas Mukhopadhyay. 2019. "Review-Microwave Radar Sensing Systems for Search and Rescue Purposes" Sensors 19, no. 13: 2879. https://doi.org/10.3390/s19132879
APA StyleThi Phuoc Van, N., Tang, L., Demir, V., Hasan, S. F., Duc Minh, N., & Mukhopadhyay, S. (2019). Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors, 19(13), 2879. https://doi.org/10.3390/s19132879