Ternary Gas Mixture Quantification Using Field Asymmetric Ion Mobility Spectrometry (FAIMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. FAIMS
2.2. Measurement System
2.3. Measurement Method
2.4. Data Evaluation
2.5. Gas Mixture Quantification
2.6. Automatic Adjustment of the Learning Rate
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yamanaka, T.; Matsumoto, R.; Nakamoto, T. Study of odor blender using solenoid valves controlled by delta–sigma modulation method for odor recorder. Sens. Actuators B Chem. 2002, 87, 457–463. [Google Scholar] [CrossRef]
- Nakamoto, T. Olfactory Display and Odor Recorder. In Essentials of Machine Olfaction and Taste; Nakamoto, T., Ed.; John Wiley & Sons Singapore Pte Ltd.: Singapore, 2016; pp. 247–309. ISBN 978-1-118-76849-5. [Google Scholar]
- Choh, N.; Wyszynsky, B.; Takushima, H.; Nitikarn, N.; Kinoshita, M.; Nakamoto, T. Demonstration of Interactive Teleolfaction with Movie. In Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, Yokohama, Japan, 3–5 December 2008; ACM: New York, NY, USA, 2008; p. 395. [Google Scholar]
- Nakamoto, T.; Otaguro, S.; Kinoshita, M.; Nagahama, M.; Ohinishi, K.; Ishida, T. Cooking up an Interactive Olfactory Game Display. IEEE Comput. Graph. Appl. 2008, 28, 75–78. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z.; Hill, H.H. Ion Mobility Spectrometry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-138-19948-4. [Google Scholar]
- Keller, T.; Miki, A.; Regenscheit, P.; Dirnhofer, R.; Schneider, A.; Tsuchihashi, H. Detection of designer drugs in human hair by ion mobility spectrometry (IMS). Forensic Sci. Int. 1998, 94, 55–63. [Google Scholar] [CrossRef]
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.A.; Ewing, G.J. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef]
- Shvartsburg, A.A. Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-5106-3. [Google Scholar]
- Shvartsburg, A.A. Conceptual Implementation of Differential IMS and Separation Properties of FAIMS. In Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS; CRC Press: Boca Raton, FL, USA, 2009; pp. 125–200. ISBN 978-1-4200-5106-3. [Google Scholar]
- Rutolo, M.; Covington, J.A.; Clarkson, J.; Iliescu, D. Detection of Potato Storage Disease via Gas Analysis: A Pilot Study Using Field Asymmetric Ion Mobility Spectrometry. Sensors 2014, 14, 15939–15952. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.; Khot, L.R.; Schroeder, B.K.; Sankaran, S. FAIMS based volatile fingerprinting for real-time postharvest storage infections detection in stored potatoes and onions. Postharvest Biol. Technol. 2018, 135, 83–92. [Google Scholar] [CrossRef]
- Covington, J.A.; der Schee, M.V.; Edge, A.S.L.; Boyle, B.; Savage, R.S.; Arasaradnam, R.P. The application of FAIMS gas analysis in medical diagnostics. Analyst 2015, 140, 6775–6781. [Google Scholar] [CrossRef]
- Covington, J.A.; Wedlake, L.; Andreyev, J.; Ouaret, N.; Thomas, M.G.; Nwokolo, C.U.; Bardhan, K.D.; Arasaradnam, R.P. The Detection of Patients at Risk of Gastrointestinal Toxicity during Pelvic Radiotherapy by Electronic Nose and FAIMS: A Pilot Study. Sensors 2012, 12, 13002–13018. [Google Scholar] [CrossRef] [Green Version]
- Sahota, A.S.; Gowda, R.; Arasaradnam, R.P.; Daulton, E.; Savage, R.S.; Skinner, J.R.; Adams, E.; Ward, S.A.; Covington, J.A. A simple breath test for tuberculosis using ion mobility: A pilot study. Tuberculosis 2016, 99, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Arasaradnam, R.P.; Wicaksono, A.; O’Brien, H.; Kocher, H.M.; Covington, J.A.; Crnogorac-Jurcevic, T. Noninvasive Diagnosis of Pancreatic Cancer through Detection of Volatile Organic Compounds in Urine. Gastroenterology 2018, 154, 485–487. [Google Scholar] [CrossRef]
- Plat, V.D.; van Gaal, N.; Covington, J.A.; Neal, M.; de Meij, T.G.J.; van der Peet, D.L.; Zonderhuis, B.; Kazemier, G.; de Boer, N.K.H.; Daams, F. Non-Invasive Detection of Anastomotic Leakage Following Esophageal and Pancreatic Surgery by Urinary Analysis. Dig. Surg. 2019, 36, 173–180. [Google Scholar] [CrossRef]
- Pfammatter, S.; Bonneil, E.; McManus, F.P.; Thibault, P. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS). J. Proteome Res. 2019, 18, 2129–2138. [Google Scholar] [CrossRef]
- Kontunen, A.; Karjalainen, M.; Lekkala, J.; Roine, A.; Oksala, N. Tissue Identification in a Porcine Model by Differential Ion Mobility Spectrometry Analysis of Surgical Smoke. Ann. Biomed. Eng. 2018, 46, 1091–1100. [Google Scholar] [CrossRef] [Green Version]
- Sutinen, M.; Kontunen, A.; Karjalainen, M.; Kiiski, J.; Hannus, J.; Tolonen, T.; Roine, A.; Oksala, N. Identification of breast tumors from diathermy smoke by differential ion mobility spectrometry. Eur. J. Surg. Oncol. 2019, 45, 141–146. [Google Scholar] [CrossRef]
- Surakka, V. From electrical scent analysis to digital scent production. In Proceedings of the Journal of Digital Olfaction Society (JDOS), Tokyo, Japan; 2016; Volume 4, p. 42. [Google Scholar]
- Li, J.; Gutierrez-Osuna, R.; Hodges, R.D.; Luckey, G.; Crowell, J.; Schiffman, S.S.; Nagle, H.T. Using Field Asymmetric Ion Mobility Spectrometry for Odor Assessment of Automobile Interior Components. IEEE Sens. J. 2016, 16, 5747–5756. [Google Scholar] [CrossRef]
- Wilks, A.; Hart, M.; Koehl, A.; Somerville, J.; Boyle, B.; Ruiz-Alonso, D. Characterization of a miniature, ultra-high-field, ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 2012, 15, 199–222. [Google Scholar] [CrossRef]
- Eiceman, G.A.; Karpas, Z.; Hill, H.H. Gas Chromatography. In Ion Mobility Spectrometry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 53–57. ISBN 978-1-138-19948-4. [Google Scholar]
- Hunter, E.P.L.; Lias, S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413–656. [Google Scholar] [CrossRef]
- Nakamoto, T.; Ustumi, S.; Yamashita, N.; Moriizumi, T.; Sonoda, Y. Active gas/odor sensing system using automatically controlled gas blender and numerical optimization technique. Sens. Actuators B Chem. 1994, 20, 131–137. [Google Scholar] [CrossRef]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Dean, J.; Corrado, G.; Monga, R.; Chen, K.; Devin, M.; Mao, M.; Ranzato, M.A.; Senior, A.; Tucker, P.; Yang, K.; et al. Large Scale Distributed Deep Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1223–1231. [Google Scholar]
- Yamanaka, T.; Matsumoto, R.; Nakamoto, T. Fundamental study of odor recorder for multicomponent odor using recipe exploration method based on singular value decomposition. IEEE Sens. J. 2003, 3, 468–474. [Google Scholar] [CrossRef]
- Ito, J.; Nakamoto, T.; Uematsu, H. Discrimination of halitosis substance using QCM sensor array and a preconcentrator. Sens. Actuators B Chem. 2004, 99, 431–436. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokoshiki, Y.; Nakamoto, T. Ternary Gas Mixture Quantification Using Field Asymmetric Ion Mobility Spectrometry (FAIMS). Sensors 2019, 19, 3007. https://doi.org/10.3390/s19133007
Yokoshiki Y, Nakamoto T. Ternary Gas Mixture Quantification Using Field Asymmetric Ion Mobility Spectrometry (FAIMS). Sensors. 2019; 19(13):3007. https://doi.org/10.3390/s19133007
Chicago/Turabian StyleYokoshiki, Yasufumi, and Takamichi Nakamoto. 2019. "Ternary Gas Mixture Quantification Using Field Asymmetric Ion Mobility Spectrometry (FAIMS)" Sensors 19, no. 13: 3007. https://doi.org/10.3390/s19133007
APA StyleYokoshiki, Y., & Nakamoto, T. (2019). Ternary Gas Mixture Quantification Using Field Asymmetric Ion Mobility Spectrometry (FAIMS). Sensors, 19(13), 3007. https://doi.org/10.3390/s19133007