A Blood Flow Volume Linear Inversion Model Based on Electromagnetic Sensor for Predicting the Rate of Arterial Stenosis
Abstract
:1. Introduction
2. Theory of the Electromagnetic Induction
3. Mathematical Model
3.1. Mathematical Model of Induction Potential Difference
3.2. Mathematical Model of Weight Function
3.3. Blood Flow Volume Inversion Model
4. Simulation Results and Analysis
4.1. Simulation Model of Blood Flow Potential Difference Measurement
4.2. Verification of Blood Flow Volume Inversion Model
- Test1: Blood flow was injected into the right artery alone
- Test2: Blood flow was both injected into two arteries simultaneously
- Test3: Blood flow was both injected into two arteries after they were rotated 45° to the Y-axis
4.3. Prediction of Arterial Models with Different Rates of Stenosis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Available online: http://www.who.int/mediacentre/factsheets/fs310/en/ (accessed on 19 May 2019).
- Katzen, B.T. Current Status of Digital Angiography in Vascular Imaging. Radiol. Clin. N. Am. 1995, 33, 1–14. [Google Scholar] [PubMed]
- Lee, H.M.; Wang, Y.; Sostman, H.D. Distal lower extremity arteries: Evaluation with two-dimensional MR digital subtraction angiography. Radiology 1998, 207, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Aschenbach, R.; Esser, D. Magnetic resonance angiography for the head and neck region. Hno 2004, 52, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Randoux, B.; Marro, B.; Koskas, F. Carotid artery stenosis: Prospective comparison of CT, three-dimensional gadolinium-enhanced MR, and conventional angiography. Radiology 2001, 220, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Wittram, C.; Kalra, M.K.; Maher, M.M. Acute and chronic pulmonary emboli: Angiography-CT correlation. Am. J. Roentgenol. 2006, 186, S421–S429. [Google Scholar] [CrossRef]
- Yamada, I.; Nakagawa, T.; Himeno, Y. Takayasu arteritis: Evaluation of the thoracic aorta with CT angiography. Radiology 1998, 209, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Bertolotti, C.; Qin, Z.; Lamontagne, B. Influence of multiple stenoses on echo-Doppler functional diagnosis of peripheral arterial disease: A numerical and experimental study. Ann. Biomed. Eng. 2006, 34, 564–574. [Google Scholar] [CrossRef]
- Ubeyli, E.D.; Guler, I. Neural network analysis of internal carotid arterial Doppler signals: Predictions of stenosis and occlusion. Expert Syst. Appl. 2003, 35, 405–420. [Google Scholar]
- Teodorescu, V.; Gustavson, S.; Schanzer, H. Duplex Ultrasound Evaluation of Hemodialysis Access: A Detailed Protocol. Int. J. Nephrol. 2012, 2012, 1–7. [Google Scholar] [CrossRef]
- Lui, E.Y.L.; Steinman, A.H.; Cobbold, R.S.C.; Johnston, K.W. Human factors as a source of error in peak Doppler velocity measurement. J. Vasc. Surg. 2005, 42, e1–e972. [Google Scholar] [CrossRef]
- Maeda, K.; Mies, G.; Olah, L. Quantitative measurement of local cerebral blood flow in the anesthetized mouse using intraperitoneal [C-14]iodoantipyrine injection and final arterial heart blood sampling. J. Cereb. Blood Flow Metab. 2000, 20, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Delille, J.P.; Slanetz, P.J.; Yeh, E.D. Breast cancer: Regional blood flow and blood volume measured with magnetic susceptibility-based MR imaging–Initial results. Radiology 2002, 223, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Hametner, B.; Weber, T.; Mayer, C. Calculation of arterial characteristic impedance: A comparison using different blood flow models. Math. Comput. Model. Dyn. Syst. 2013, 19, 319–330. [Google Scholar] [CrossRef]
- Krivitski, N.M.; MacGibbon, D.; Gleed, R.D. Accuracy of dilution techniques for access flow measurement during hemodialysis. Am. J. Kidney Dis. 1998, 31, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Gawlikowski, M.; Lewandowski, M.; Nowicki, A. The Application of Ultrasonic Methods to Flow Measurement and Detection of Microembolus in Heart Prostheses. Acta Phys. Pol. A 2013, 124, 417–420. [Google Scholar] [CrossRef]
- Schorer, R.; Badoual, A.; Bastide, B. A feasability study of color flow doppler vectorization for automated blood flow monitoring. J. Clin. Monit. Comput. 2017, 31, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.J.; Gregory, T.S.; Boland, B.L. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging. Proc. Inst. Mech. Eng. Part h J. Eng. Med. 2018, 232, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Alsop, D.C.; Detre, J.A. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998, 208, 410–416. [Google Scholar] [CrossRef]
- Webilor, R.O.; Lucas, G.P.; Agolom, M.O. Fast imaging of the velocity profile of the conducting continuous phase in multiphase flows using an electromagnetic flowmeter. Flow Meas. Instrum. 2018, 64, 180–189. [Google Scholar] [CrossRef]
- Kollar, L.E.; Lucas, G.P.; Meng, Y. Reconstruction of velocity profiles in axisymmetric and asymmetric flows using an electromagnetic flow meter. Meas. Sci. Technol. 2015, 26, 055301. [Google Scholar] [CrossRef]
- Li, X. A Novel Numerical Approach for Solving Weight Function of Electromagnetic Flow Meter. Mapan-J. Metrol. Soc. India 2019, 30, 59–64. [Google Scholar] [CrossRef]
- Wahhab, H.A.A.; Aziz, A.R.A.; Al-Kayiem, H.H. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow. In Proceedings of the 3rd International Conference on Mechanical, Manufacturing and Process Plant Engineering (ICMMPE), Penang, Malaysia, 22–23 November 2017. [Google Scholar]
- Galili, I.; Kaplan, D.; Lehavi, Y. Teaching Faraday’s law of electromagnetic induction in an introductory physics course. Am. J. Phys. 2006, 74, 337–343. [Google Scholar] [CrossRef]
- Chemin, J.Y. Theorems of unicity for the tridimensional Navier-Stokes system. J. D Anal. Math. 1999, 77, 27–50. [Google Scholar] [CrossRef]
- Imura, T.; Hori, Y. Unified Theory of Electromagnetic Induction and Magnetic Resonant Coupling. Electr. Eng. Jpn 2017, 199, 58–80. [Google Scholar] [CrossRef]
- Boykin, T.B.; Luisier, M.; Klimeck, G. Current density and continuity in discretized models. Eur. J. Phys. 2010, 31, 1077–1087. [Google Scholar] [CrossRef]
- Shercliff, J.A. The Theory of Electromagnetic Flow-Measurement; Cambridge University Press: Cambridge, UK, 1962; pp. 472–477. [Google Scholar]
- Bevir, M. The theory of induced voltage electromagnetic flowmeters. J. Fluid Mech. 1970, 43, 577590. [Google Scholar] [CrossRef]
- Mita, K. Virtual probability current associated with the spin. Am. J. Phys. 2000, 68, 259–264. [Google Scholar] [CrossRef]
- Cheng, Z.; WOOD, N.B.; GIBBS, R.G.J. Geometric and Flow Features of Type B Aortic Dissection: Initial Findings and Comparison of Medically Treated and Stented Cases. Ann. Biomed. Eng. 2015, 43, 177–189. [Google Scholar] [CrossRef]
- Abdalla, S.; Al-ameer, S.S.; Al-Magaishi, S.H. Electrical properties with relaxation through human blood. Biomicrofluidics 2010, 4, 3. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Liu, Y.-j.; Xu, B.; Duo, Y.-h. A Blood Flow Volume Linear Inversion Model Based on Electromagnetic Sensor for Predicting the Rate of Arterial Stenosis. Sensors 2019, 19, 3006. https://doi.org/10.3390/s19133006
Yang D, Liu Y-j, Xu B, Duo Y-h. A Blood Flow Volume Linear Inversion Model Based on Electromagnetic Sensor for Predicting the Rate of Arterial Stenosis. Sensors. 2019; 19(13):3006. https://doi.org/10.3390/s19133006
Chicago/Turabian StyleYang, Dan, Yan-jun Liu, Bin Xu, and Yun-hui Duo. 2019. "A Blood Flow Volume Linear Inversion Model Based on Electromagnetic Sensor for Predicting the Rate of Arterial Stenosis" Sensors 19, no. 13: 3006. https://doi.org/10.3390/s19133006
APA StyleYang, D., Liu, Y. -j., Xu, B., & Duo, Y. -h. (2019). A Blood Flow Volume Linear Inversion Model Based on Electromagnetic Sensor for Predicting the Rate of Arterial Stenosis. Sensors, 19(13), 3006. https://doi.org/10.3390/s19133006