Selective Feature Generation Method Based on Time Domain Parameters and Correlation Coefficients for Filter-Bank-CSP BCI Systems
Abstract
:1. Introduction
2. Methods
2.1. Principle Channel Selection
2.2. Supporting Channel Set for the Principle Channel
2.3. FBCSP Applied to the Supporting Channel Set
3. Result and Discussion
3.1. BCI Competition Dataset IVa
3.2. BCI Competition IV Dataset I
3.3. Experiment Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Curran, E.A.; Stokes, M.J. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cognit. 2003, 51, 326–336. [Google Scholar] [CrossRef]
- Birbaumer, N. Brain-computer-interface research: Coming of age. Clin. Neurophysiol. 2006, 17, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Katona, J.; Kovari, A. Examining the Learning Efficiency by a Brain-Computer Interface System. Acta Polytech. Hung. 2018, 15, 251–280. [Google Scholar]
- Kreilinger, A.; Hiebel, H.; MÜller-Putz, G.R. Single versus multiple events error potential detection in a BCI-controlled car game with continuous and discrete feedback. IEEE Trans. Biomed. Eng. 2016, 63, 519–529. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Neuper, C.; Wörtz, M.; Pfurtscheller, G. ERD/ERS patterns reflecting sensorimotor activation and deactivation. Prog. Brain Res. 2006, 159, 211–222. [Google Scholar]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; Lopes da Silva, F.H. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage 2006, 31, 153–159. [Google Scholar] [CrossRef]
- Hamedi, H.; Salleh, S.H.; Noor, A.M. Electroencephalographic motor imagery brain connectivity analysis for BCI: A review. Neural Comput. 2016, 28, 999–1041. [Google Scholar] [CrossRef]
- Graimann, B.; Pfurtscheller, G. Quantification and visualization of event-related changes in oscillatory brain activity in the time frequency domain. Prog. Brain Res. 2006, 159, 79–97. [Google Scholar]
- Naeem, M.; Brunner, C.; Pfurtscheller, G. Dimensionality reduction and channel selection of motor imagery electroencephalographic data. Comput. Intell. Neurosci. 2009, 1, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Müller, K.-R. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 2008, 25, 41–56. [Google Scholar] [CrossRef]
- Ramoser, H.; Müller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2008, 8, 441–446. [Google Scholar] [CrossRef]
- Müller-Gerking, J.; Pfurtscheller, G.; Flyvbjerg, H. Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 1999, 110, 787–798. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Q.; Zheng, W. L1-norm-based common spatial patterns. IEEE Trans. Biomed. Eng. 2012, 59, 653–662. [Google Scholar] [CrossRef]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 2390–2397. [Google Scholar]
- Ang, K.K.; Chin, Z.Y.; Wang, C.; Guan, C.; Zhang, H. Filter bank common spatial pattern algorithm on BCI Competition IV datasets 2a and 2b. Frontiers Neurosci. 2012, 6, 1–9. [Google Scholar] [CrossRef]
- Lotte, F.; Guan, C. Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Trans. Biomed. Eng. 2011, 58, 355–362. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.; Lee, S. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 498–505. [Google Scholar] [CrossRef]
- Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Optimizing the channel Selection and Classification Accuracy in EEG-Based BCI. IEEE Trans. Biomed. Eng. 2011, 58, 1865–1873. [Google Scholar] [CrossRef]
- Feng, J.K.; Jin, J.; Daly, I.; Zhou, J.; Niu, Y.; Wang, X.; Cichocki, A. An Optimized Channel Selection Method Based on Multifrequency CSP-Rank for Motor Imagery-Based BCI System. Comput. Intell. Neurosci. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Belwafi, k.; Romain, O.; Gannouni, S.; Ghaffari, F.; Djemal, R.; Ouni, B. An embedded implementation based on adaptive filter bank for brain–computer interface systems. J. Neurosci. Methods 2018, 305, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Vidaurre, C.; Kramer, N.; Blankertz, B.; Schlögl, A. Time domain parameters as a feature for EEG-based brain–computer interfaces. Neural Netw. 2009, 22, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kyrgyzov, O.; Wiart, J.; Bloch, I. Subject-specific channel selection for classification of motor imagery electroencephalographic data. In Proceedings of the ICASSP IEEE International Conference on Acoustics Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 1277–1280. [Google Scholar]
- Li, X.; Guan, C.; Zhang, H.; Ang, K.K. A Unified Fishers Ratio Learning Method for Spatial Filter Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2727–2737. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Xiong, T. Svm versus least squares svm. In Proceedings of the The 11th International Conference on Artificial Intelligence and Statistics (AISTATS), San Juan, Puerto Rico, 21–24 March 2007; Volume 2, pp. 640–647. [Google Scholar]
- Müller, K.R.; Krauledat, M.; Dornhege, G.; Curio, G.; Blankertz, B. Machine learning techniques for brain-computer interfaces. Biomed. Eng. Biomed. Tech. 2004, 49, 11–22. [Google Scholar]
- Data Set IVa for the BCI Competition III. Available online: http://www.bbci.de/competition/iii/desc IVa.html (accessed on 15 June 2005).
- Deklerk, C.; Johnson, M.H.; Southgate, V. An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy. Dev. Cognit. Neurosci. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blankertz, B.; Dornhege, G.; Krauledat, M.; Curio, G.; Müller, K.-R. The noninvasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. NeuroImage 2007, 37, 539–550. [Google Scholar] [CrossRef]
Subject | Training Data | Test Data |
---|---|---|
al | 224 | 56 |
aa | 168 | 112 |
aw | 84 | 196 |
av | 56 | 224 |
ay | 28 | 252 |
Subject | CSP | SCSP | RCSP | TDP |
---|---|---|---|---|
al | 94.64 | 94.6 | 98.21 | 100 |
aa | 84.82 | 88.39 | 84.82 | 75 |
av | 61.22 | 61.22 | 62.24 | 65.82 |
aw | 77.68 | 80.02 | 81.25 | 79.46 |
ay | 82.54 | 82.14 | 88.49 | 89.68 |
mean | 80.18 | 81.28 | 83.00 | 82.00 |
Subject | FBCSP | FBRCSP | FBSCSP | CSP-R-MF | Proposed Method | Proposed Method |
---|---|---|---|---|---|---|
(Constant Threshold, ) | (Individual Threshold) | |||||
al | 94.64 | 94.64 | 100 | 100 | 100 | 100 () |
aa | 88.39 | 91.07 | 90.18 | 89.29 | 90.18 | 91.96 () |
av | 71.42 | 75 | 70.91 | 73.46 | 72.45 | 72.45 () |
aw | 78.21 | 76.78 | 88.39 | 87.5 | 88.39 | 88.39 () |
ay | 83.73 | 93.65 | 89.31 | 85.31 | 92.86 | 92.86 () |
mean | 83.28 | 86.23 | 87.76 | 87.11 | 88.78 | 89.13 |
Subject | |||||
---|---|---|---|---|---|
al | 100 (13) | 98.21 (11) | 98.21 (10) | 98.21 (7) | 98.21 (7) |
aa | 90.18 (15) | 90.18 (12) | 91.96 (10) | 91.96 (10) | 87.5 (9) |
av | 72.45 (17) | 72.45 (17) | 70.41(14) | 63.78 (12) | 58.16 (9) |
aw | 88.39 (12) | 80.80 (10) | 77.23 (9) | 77.23 (9) | 76.34 (8) |
ay | 92.86 (10) | 92.86 (10) | 92.86 (10) | 87.7 (8) | 87.7 (6) |
mean | 88.78 | 86.9 | 86.13 | 83.78 | 81.58 |
Subject | FBCSP | FBSCSP | CSP-R-MF | Proposed Method | Proposed Method |
---|---|---|---|---|---|
(Constant Threshold, ) | (Individual Threshold) | ||||
a | 75 | 79.5 | 81.5 | 86.5 | 86.5 () |
b | 54 | 55.5 | 63 | 53.5 | 57.25 () |
f | 80.75 | 82.75 | 79 | 89.5 | 92.5 () |
g | 92.5 | 93 | 87.5 | 90.5 | 90.5 () |
mean | 75.56 | 77.69 | 77.75 | 80.00 | 81.69 |
Subject | |||||
---|---|---|---|---|---|
a | 82.75 (27) | 86.5 (23) | 83.75 (18) | 82.5 (12) | 82.75 (7) |
b | 57.25 (49) | 53.5 (26) | 51.5 (19) | 55.5 (12) | 55 (8) |
f | 88.5 (50) | 89.5 (43) | 92.5 (35) | 91.75 (30) | 89.5 (17) |
g | 90.25 (15) | 90.5 (15) | 83 (10) | 82.75 (7) | 79.5 (5) |
mean | 79.69 | 80.00 | 77.69 | 78.13 | 76.69 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Chung, W. Selective Feature Generation Method Based on Time Domain Parameters and Correlation Coefficients for Filter-Bank-CSP BCI Systems. Sensors 2019, 19, 3769. https://doi.org/10.3390/s19173769
Park Y, Chung W. Selective Feature Generation Method Based on Time Domain Parameters and Correlation Coefficients for Filter-Bank-CSP BCI Systems. Sensors. 2019; 19(17):3769. https://doi.org/10.3390/s19173769
Chicago/Turabian StylePark, Yongkoo, and Wonzoo Chung. 2019. "Selective Feature Generation Method Based on Time Domain Parameters and Correlation Coefficients for Filter-Bank-CSP BCI Systems" Sensors 19, no. 17: 3769. https://doi.org/10.3390/s19173769
APA StylePark, Y., & Chung, W. (2019). Selective Feature Generation Method Based on Time Domain Parameters and Correlation Coefficients for Filter-Bank-CSP BCI Systems. Sensors, 19(17), 3769. https://doi.org/10.3390/s19173769