Machine Learning Weather Soft-Sensor for Advanced Control of Wastewater Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning for Soft-Sensors in WWTPs
2.1.1. Support Vector Machines
2.1.2. K-Nearest Neighbors
2.1.3. Decision Trees
2.1.4. Random Forest
2.1.5. Gaussian Naive Bayes
2.2. WWTP Benchmark Simulation Model 1
2.3. Exploration and Pre-Processing of BSM1 Inflow Data
3. Results
- (i)
- traditional 10-fold-cross validation over the inflow dataset; and
- (ii)
- a validation dataset after the training dataset, where the machine learning algorithms first learned the model through a training dataset and then the models were applied on a validation dataset to predict the weather signal.
3.1. 10-Fold-Cross Validation
3.2. Validation Dataset
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Nations, U. The Millennium Development Goals Report; Technical report; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Metcalf, E.; Eddy, H. Wastewater Engineering: Treatment and Reuse; McGraw-Hill: Columbus, OH, USA, 2003; p. 1819. [Google Scholar]
- Yang, T.; Qiu, W.; Ma, Y.; Chadli, M.; Zhang, L. Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes. Neurocomputing 2014, 136, 88–95. [Google Scholar] [CrossRef]
- Holenda, B.; Domokos, E.; Redey, A.; Fazakas, J. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Comput. Chem. Eng. 2008, 32, 1270–1278. [Google Scholar] [CrossRef]
- Hernandez-del Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. Energy and Environmental Efficiency for the N-Ammonia Removal Process in Wastewater Treatment Plants by Means of Reinforcement Learning. Energies 2016, 9, 755. [Google Scholar] [CrossRef]
- Hamitlon, R.; Braun, B.; Dare, R.; Koopman, B.; Svoronos, S. Control issues and challenges in wastewater treatment plants. IEEE Control Syst. Mag. 2006, 26, 63–69. [Google Scholar]
- Han, H.; Qiao, J.; Chen, Q. Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Eng. Pract. 2012, 20, 465–476. [Google Scholar] [CrossRef]
- Revollar, S.; Vega, P.; Vilanova, R. Economic optimization of Wastewater Treatment Plants using Non Linear Model Predictive Control. In Proceedings of the 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile Gradistei, Romania, 14–16 October 2015; pp. 583–588. [Google Scholar]
- Ribeiro, D.; Sanfins, A.; Belo, O. Wastewater Treatment Plant Performance Prediction with Support Vector Machines. In Advances in Data Mining. Applications and Theoretical Aspects; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 99–111. [Google Scholar]
- Yu, Y.; Zou, Z.; Wang, S. Statistical regression modeling for energy consumption in wastewater treatment. J. Environ. Sci. 2019, 75, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Mirbagheri, S.; Bagheri, Z.; Kamarkhani, A. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Saf. Environ. Prot. 2015, 95, 12–25. [Google Scholar] [CrossRef]
- Hernandez-del Olmo, F.; Gaudioso, E. An Emergent Approach for the control of WasteWater Treatment Plants by means of reinforcement learning techniques. Expert Syst. Appl. 2012, 39, 2355–2360. [Google Scholar] [CrossRef]
- Vanrolleghem, P.; Lee, D. On-Line Monitoring Equipment for Wastewater Treatment Processes: State of the Art. Water Sci. Technol. 2003, 47, 1–34. [Google Scholar] [CrossRef]
- Alexandridis, A. Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 2013, 23, 1–14. [Google Scholar] [CrossRef]
- Haimi, H.; Mulas, M.; Corona, F.; Vahala, R. Data-derived soft-sensors for biological wastewater treatment plants: An overview. Environ. Model. Softw. 2013, 47, 88–107. [Google Scholar] [CrossRef]
- Thürlimann, C.; Dürrenmatt, D.; Villez, K. Soft-sensing with qualitative trend analysis for wastewater treatment plant control. Control Eng. Pract. 2018, 70, 121–133. [Google Scholar] [CrossRef]
- Copp, J. The COST Simulation Benchmark: Description and Simulator Manual; SciEntific and Technical Report; Office for Official Publications of the European Community: Luxembourg, 2002. [Google Scholar]
- Henze, M.; Gujer, W.; Mino, T.; Loosdrecht, M.V. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; Scientific and Technical Report 9; IWA: London, UK, 2000. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Kadlec, P.; Gabrys, B.; Strandt, S. Data-driven Soft Sensors in the process industry. Comput. Chem. Eng. 2009, 33, 795–814. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Geng, Z.; Zhu, Q. Data driven soft sensor development for complex chemical processes using extreme learning machine. Chem. Eng. Res. Des. 2015, 102, 1–11. [Google Scholar] [CrossRef]
- Vapnik, V.N. Statistical Learning Theory; Wiley-Interscience: Hoboken, NJ, USA, 1998. [Google Scholar]
- Liu, G.; Zhou, D.; Xu, H.; Mei, C. Model optimization of SVM for a fermentation soft sensor. Exp. Syst. Appl. 2010, 37, 2708–2713. [Google Scholar] [CrossRef]
- Guo, H.; Jeong, K.; Lim, J.; Jo, J.; Kim, Y.; Park, Y.; Kim, J.; Cho, K. Prediction of effluent concentration in a wastewater treatment plant using machine learning models. J. Environ. Sci. 2015, 32, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Altman, N.S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. Am. Stat. 1992, 46, 175–185. [Google Scholar] [Green Version]
- Kaneko, H.; Funatsu, K. Estimation of predictive accuracy of soft sensor models based on data density. Chemom. Intell. Lab. Syst. 2013, 128, 111–117. [Google Scholar] [CrossRef]
- Kim, M.; Kim, Y.; Kim, H.; Piao, W.; Kim, C. Evaluation of the k-nearest neighbor method for forecasting the influent characteristics of wastewater treatment plant. Front. Environ. Sci. Eng. 2016, 10, 299–310. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth and Brooks: Pacific Grove, CA, USA, 1984. [Google Scholar]
- Xu, M.; Watanachaturaporn, P.; Varshney, P.K.; Arora, M. Decision tree regression for soft classification of remote sensing data. Remote Sens. Environ. 2005, 97, 322–336. [Google Scholar] [CrossRef]
- Carrasco, E.; Rodríguez, J.; Puñal, A.; Roca, E.; Lema, J. Rule-based diagnosis and supervision of a pilot-scale wastewater treatment plant using fuzzy logic techniques. Exp. Syst. Appl. 2002, 22, 11–20. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Random forests and nearest shrunken centroids for the classification of sensor array data. Sens. Actuators B Chem. 2008, 131, 93–99. [Google Scholar] [CrossRef]
- Torregrossa, D.; Schutz, G.; Cornelissen, A.; Hernández-Sancho, F.; Hansen, J. Energy saving in WWTP: Daily benchmarking under uncertainty and data availability limitations. Environ. Res. 2016, 148, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992, 9, 309–347. [Google Scholar] [CrossRef]
- Yan, W.; Shao, H.; Wang, X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput. Chem. Eng. 2004, 28, 1489–1498. [Google Scholar] [CrossRef]
- Li, D.; Yang, H.; Liang, X.F. Prediction analysis of a wastewater treatment system using a Bayesian network. Environ. Model. Softw. 2013, 40, 140–150. [Google Scholar] [CrossRef]
- Gernaey, K.; Jeppsson, U.; Vanrolleghem, P.; Copp, J. Benchmarking of Control Strategies for Wastewater Treatment Plants; IWA Scientific and Technical Report; IWA Publishing: London, UK, 2014. [Google Scholar]
- Alex, J.; Benedetti, L.; Copp, J.; Gernaey, K.; Jeppsson, U.; Nopens, I.; Pons, M.; Rieger, L.; Rosen, C.; Steyer, J.; et al. Benchmark Simulation Model no. 1 (BSM1). Available online: https://www.iea.lth.se/publications/Reports/LTH-IEA-7229.pdf (accessed on 24 May 2019).
- Smith, R. Chemical Oxygen Demand in Influent Wastewater Monitoring. Available online: https://www.ysi.com/ysi-blog/water-blogged-blog/2017/01/chemical-oxygen-demand-in-influent-wastewater-monitoring (accessed on 21 May 2019).
- Rhosonics. The Benefits of in-Line COD Measurement in Industrial Wastewater. Available online: https://www.rhosonics.nl/news/the-benefits-of-in-line-cod-measurement-in-industrial-wastewater/ (accessed on 21 May 2019).
- Ogata, K. Modern Control Engineering; Instrumentation and controls series; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Hernández-del Olmo, F.; Gaudioso, E.; Dormido, R.; Duro, N. Tackling the start-up of a reinforcement learning agent for the control of wastewater treatment plants. Knowl.-Based Syst. 2018, 144, 9–15. [Google Scholar] [CrossRef]
Attribute | Definition |
---|---|
Flowrate | Q |
Soluble inert organic matter | |
Readily biodegradable substrate | |
Particulate inert organic matter | |
Slowly biodegradable substrate | |
Active heterotrophic biomass | |
Active autotrophic biomass | |
Particulate products arising from biomass decay | |
Oxygen | |
Nitrate and nitrite nitrogen | |
Nitrogen | |
Soluble biodegradable organic nitrogen | |
Particulate biodegradable organic nitrogen | |
Alkalinity |
Q | BOD5 | COD | N_Kjedahl | N_Ammonia | |
---|---|---|---|---|---|
Q | 1.00 | −0.07 | 0.03 | −0.07 | −0.19 |
BOD5 | −0.07 | 1.00 | 0.99 | 0.91 | 0.74 |
COD | 0.03 | 0.99 | 1.00 | 0.89 | 0.70 |
N_Kjedahl | −0.07 | 0.91 | 0.89 | 1.00 | 0.94 |
N_ammonia | −0.19 | 0.74 | 0.70 | 0.94 | 1.00 |
Experiment | Naive.Bayes | Decision.Tree | KNN(1) | KNN(3) | Random.Forest | SVM |
---|---|---|---|---|---|---|
no filter | 0.41 | 0.44 | 0.14 | 0.17 | 0.14 | 0.44 |
smooth filter | 0.56 | 0.80 | 0.79 | 0.83 | 0.95 | 0.73 |
strong filter | 0.88 | 1.00 | 0.99 | 0.99 | 1.00 | 0.98 |
Experiment | Naive.Bayes | Decision.Tree | KNN(1) | KNN(3) | Random.Forest | SVM |
---|---|---|---|---|---|---|
no filter | 0.41 | 0.45 | 0.46 | 0.47 | 0.47 | 0.45 |
smooth filter | 0.55 | 0.72 | 0.78 | 0.76 | 0.78 | 0.65 |
strong filter | 0.24 | 0.33 | 0.36 | 0.36 | 0.33 | 0.33 |
Experiment | Naive.Bayes | Decision.Tree | KNN(1) | KNN(3) | Random.Forest | SVM |
---|---|---|---|---|---|---|
no filter | 0.41 | 0.45 | 0.46 | 0.46 | 0.47 | 0.45 |
smooth filter | 0.56 | 0.75 | 0.85 | 0.82 | 0.84 | 0.68 |
strong filter | 0.39 | 0.33 | 0.35 | 0.35 | 0.33 | 0.33 |
Q | COD | N_Ammonia | KNN(1) | Random.Forest | |
---|---|---|---|---|---|
Q | 1.00 | 0.05 | −0.16 | 0.05 | 0.08 |
COD | 0.05 | 1.00 | 0.69 | −0.00 | −0.00 |
N_ammonia | −0.16 | 0.69 | 1.00 | −0.03 | −0.06 |
KNN(1) | 0.05 | −0.00 | −0.03 | 1.00 | 0.67 |
Random.Forest | 0.08 | −0.00 | −0.06 | 0.67 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-del-Olmo, F.; Gaudioso, E.; Duro, N.; Dormido, R. Machine Learning Weather Soft-Sensor for Advanced Control of Wastewater Treatment Plants. Sensors 2019, 19, 3139. https://doi.org/10.3390/s19143139
Hernández-del-Olmo F, Gaudioso E, Duro N, Dormido R. Machine Learning Weather Soft-Sensor for Advanced Control of Wastewater Treatment Plants. Sensors. 2019; 19(14):3139. https://doi.org/10.3390/s19143139
Chicago/Turabian StyleHernández-del-Olmo, Félix, Elena Gaudioso, Natividad Duro, and Raquel Dormido. 2019. "Machine Learning Weather Soft-Sensor for Advanced Control of Wastewater Treatment Plants" Sensors 19, no. 14: 3139. https://doi.org/10.3390/s19143139
APA StyleHernández-del-Olmo, F., Gaudioso, E., Duro, N., & Dormido, R. (2019). Machine Learning Weather Soft-Sensor for Advanced Control of Wastewater Treatment Plants. Sensors, 19(14), 3139. https://doi.org/10.3390/s19143139