A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption
Abstract
:1. Introduction
2. Experimental Setup
2.1. Absorption Line Selection
2.2. Laser Source
2.3. Sensor Configuration
3. Theoretical Optimization of the WMS
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Llano, A.L.; Raffin, T.A. Management of carbon monoxide poisoning. Chest 1990, 97, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.W.; Andelman, R.J.; Strauch, J.M.; Fortuin, N.J.; Knelson, J.H. Effect of low-level carbon monoxide exposure on onset and duration of angina pectoris: A study in ten patients with ischemic heart disease. Ann. Intern. Med. 1973, 79, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Zayasu, K.; Sekizawa, K.; Okinaga, S.; Yamaya, S.; Ohrui, T.; Sasaki, H. Increased carbon monoxide in exhaled air of asthmatic patients. Am. J. Respir. Crit. Care Med. 1997, 156, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.S.; Alm, P.; Westman, J. Nitric oxide and carbon monoxide in the brain pathology of heat stress. Prog. Brain Res. 1998, 115, 297–333. [Google Scholar] [PubMed]
- Khalil, M.A.; Rasmussen, R.A. Carbon Monoxide in the earth’s atmosphere: Increasing trend. Science 1984, 224, 54–56. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.C. Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 1986, 58, 381. [Google Scholar] [CrossRef]
- Kuusela, T.; Kauppinen, J. Photoacoustic gas analysis using interferometric cantilever microphone. Appl. Spectrosc. Rev. 2007, 42, 443–474. [Google Scholar] [CrossRef]
- Bijnen, F.G.C.; Reuss, J.; Harren, F.J.M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar] [CrossRef] [Green Version]
- Gondal, M.A.; Dastageer, A.; Shwehdi, M.H. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries. Talanta 2004, 62, 131–141. [Google Scholar] [CrossRef]
- Quimby, R.S.; Selzer, P.M.; Yen, W.M. Photoacoustic cell design: Resonant enhancement and background signals. Appl. Opt. 1977, 16, 2630–2632. [Google Scholar] [CrossRef]
- Miklós, A.; Hess, P.; Bozóki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.F.; Lewicki, R.; Razeghi, M.; Tittel, F.K. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL. Opt. Express 2013, 21, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Z.; Chang, J.; Ren, W. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing. Opt. Lett. 2017, 42, 2114–2117. [Google Scholar]
- Ma, Y.F.; He, Y.; Zhang, L.G.; Yu, X.; Zhang, J.B.; Sun, R.; Tittel, F.K. Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork. Appl. Phys. Lett. 2017, 110, 031107. [Google Scholar] [CrossRef] [Green Version]
- Altmann, J.; Baumgart, R.; Weitkamp, C. Two-mirror multipass absorption cell. Appl. Opt. 1981, 20, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Durry, G.; Danguy, T.; Pouchet, I. Open multipass absorption cell for in situ monitoring of stratospheric trace gas with telecommunication laser diodes. Appl. Opt. 2002, 41, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; Qiao, S.D.; He, Y.; Li, Y.; Zhang, Z.H.; Yu, X.; Tittel, F.K. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser. Opt. Express 2019, 27, 14163–14172. [Google Scholar] [CrossRef] [PubMed]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Chris Benner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic databas. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
- Schilt, S.; Thévenaz, L.; Robert, P. Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt. 2003, 42, 6728–6738. [Google Scholar] [CrossRef]
- Ma, Y.F.; He, Y.; Tong, Y.; Yu, X.; Tittel, F.K. Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork. Opt. Express 2017, 25, 29356–29364. [Google Scholar] [CrossRef] [Green Version]
- Schilt, S.; Thevenaz, L. Wavelength modulation photoacoustic spectroscopy: Theoretical description and experimental results. Infrared Phys. Technol. 2006, 48, 154–162. [Google Scholar] [CrossRef]
- Liu, L.X.; Mandelis, A.; Huan, H.T.; Melnikov, A. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants. Appl. Phys. B 2016, 122, 268. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, S.; Ma, Y.; He, Y.; Yu, X.; Zhang, Z.; Tittel, F.K. A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption. Sensors 2019, 19, 3202. https://doi.org/10.3390/s19143202
Qiao S, Ma Y, He Y, Yu X, Zhang Z, Tittel FK. A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption. Sensors. 2019; 19(14):3202. https://doi.org/10.3390/s19143202
Chicago/Turabian StyleQiao, Shunda, Yufei Ma, Ying He, Xin Yu, Zhonghua Zhang, and Frank K. Tittel. 2019. "A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption" Sensors 19, no. 14: 3202. https://doi.org/10.3390/s19143202
APA StyleQiao, S., Ma, Y., He, Y., Yu, X., Zhang, Z., & Tittel, F. K. (2019). A Sensitive Carbon Monoxide Sensor Based on Photoacoustic Spectroscopy with a 2.3 μm Mid-Infrared High-Power Laser and Enhanced Gas Absorption. Sensors, 19(14), 3202. https://doi.org/10.3390/s19143202