Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Amended Brachial Occlusion-Cuff Technique
2.2. Measurement Protocol
2.3. Study Population
2.4. Data Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report from the American heart association. Circulation 2018, 137. [Google Scholar] [CrossRef] [PubMed]
- Orourke, M.F.; Staessen, J.A.; Vlachopoulos, C.; Duprez, D.; Plante, G.E.E. Clinical applications of arterial stiffness; definitions and reference values. Am. J. Hypertens. 2002, 15, 426–444. [Google Scholar] [CrossRef]
- Boutouyrie, P.; Tropeano, A.I.; Asmar, R.; Gautier, I.; Benetos, A.; Lacolley, P. Laurent steéphane aortic stiffness is an independent predictor of primary coronary events in hypertensive patients. Hypertension 2002, 39, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Mattace-Raso, F.U.; Cammen, T.J.V.D.; Hofman, A.; Popele, N.M.V.; Bos, M.L.; Schalekamp, M.A.; Asmar, R.; Reneman, R.S.; Hoeks, A.P.; Breteler, M.M.; et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation 2006, 113, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Bortel, L.M.V.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.; Backer, T.D.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korteweg, D.J. Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Annalen der Physik und Chemie 1878, 241, 525–542. [Google Scholar] [CrossRef]
- Moens, A.I. Die Pulscurve; E. J. Brill: Leiden, The Netherlands, 1878. [Google Scholar]
- Laurent, S.; Cockcroft, J.; Bortel, L.V.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Correia, C.; Cardoso, J. Novel Methods for Pulse Wave Velocity Measurement. J. Med Biol. Eng. 2015, 35, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Milan, A.; Zocaro, G.; Leone, D.; Tosello, F.; Buraioli, I.; Schiavone, D.; Veglio, F. Current assessment of pulse wave velocity. J. Hypertens. 2019, 1. [Google Scholar] [CrossRef]
- Butlin, M.; Qasem, A. Large Artery Stiffness Assessment Using SphygmoCor Technology. Pulse 2016, 4, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Doupis, J.; Papanas, N.; Cohen, A.; Mcfarlan, L.; Horton, E. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness. Open Cardiovasc. Med. J. 2016, 10, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A Novel Blood Pressure-independent Arterial Wall Stiffness Parameter; Cardio-Ankle Vascular Index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirai, K.; Hiruta, N.; Song, M.; Kurosu, T.; Suzuki, J.; Tomaru, T.; Miyashita, Y.; Saiki, A.; Takahashi, M.; Suzuki, K.; et al. Cardio-Ankle Vascular Index (CAVI) as a Novel Indicator of Arterial Stiffness: Theory, Evidence and Perspectives. J. Atheroscler. Thromb. 2011, 18, 924–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohlfahrt, P.; Cífková, R.; Movsisyan, N.; Kunzová, Š.; Lešovský, J.; Homolka, M.; Soška, V.; Dobšák, P.; Lopez-Jimenez, F.; Sochor, O. Reference values of cardio-ankle vascular index in a random sample of a white population. J. Hypertens. 2017, 35, 2238–2244. [Google Scholar] [CrossRef] [PubMed]
- Maliha, G.; Townsend, R.R. A study of the VaSera arterial stiffness device in US patients. J. Clin. Hypertens. 2017, 19, 661–668. [Google Scholar] [CrossRef]
- Sun, C.K. Cardio-ankle vascular index (CAVI) as an indicator of arterial stiffness. Integr. Blood Press. Control 2013, 27. [Google Scholar] [CrossRef] [PubMed]
- Fabian, V.; Kremen, V.; Dobias, M. Method for an Accurate Automated Non-invasive Measurement of Blood Pressure Waveform and Apparatus to Carry Out the Same. U.S. Patent US10251567B2, 9 January 2017. [Google Scholar]
- Sugawara, J.; Hayashi, K.; Tanaka, H. Distal shift of arterial pressure wave reflection sites with aging. Hypertension 2010, 56, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Diaz, A.; Zócalo, Y.; Bia, D.; Wray, S.; Fischer, E.C. Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J. Clin. Hypertens. 2018, 20, 659–671. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician 1983, 32, 307. [Google Scholar] [CrossRef]
- Lin, L.I.K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255. [Google Scholar] [CrossRef]
- Wilkinson, I.B.; Mceniery, C.M.; Schillaci, G.; Boutouyrie, P.; Segers, P.; Donald, A.; Chowienczyk, P.J. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res. 2010, 4, 34–40. [Google Scholar] [CrossRef]
- AtCor Medical, Inc. (USA). SphygmoCor Vx. Brochure 2005. Available online: http://www.atcormedical.com.au/pdf/English/USA%20Letter/SphygmoCor%20Vx%20Datasheet%20DCN%20100516%20(English)%20USA.pdf (accessed on 5 May 2019).
- Attwell, L.; Rosen, S.; Upadhyay, B.; Gogalniceanu, P. The umbilicus: A reliable surface landmark for the aortic bifurcation? Surg. Radiol. Anat. 2015, 37, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
Subject No. | Sex | Age (Years) | Height (cm) | Weight (kg) | BMI (kg·m−2) | BMI Classification | SBP (mm Hg) | DBP (mm Hg) |
---|---|---|---|---|---|---|---|---|
1 | F | 23 | 165 | 60 | 22.0 | Normal weight | 127 | 75 |
2 | M | 21 | 193 | 86 | 23.1 | Normal weight | 151 | 72 |
3 | M | 66 | 178 | 94 | 29.7 | Overweight | 167 | 86 |
4 | M | 36 | 188 | 86 | 24.3 | Normal weight | 151 | 87 |
5 | F | 50 | 170 | 69 | 23.9 | Normal weight | 127 | 82 |
6 | F | 54 | 173 | 64 | 21.4 | Normal weight | 117 | 65 |
7 | F | 53 | 167 | 63 | 22.6 | Normal weight | 151 | 94 |
8 | M | 34 | 190 | 80 | 22.2 | Normal weight | 127 | 80 |
9 | M | 32 | 180 | 92 | 28.4 | Overweight | 122 | 63 |
10 | F | 40 | 174 | 73 | 24.1 | Normal weight | 125 | 74 |
11 | M | 46 | 183 | 105 | 31.4 | Obesity Class 1 | 122 | 67 |
12 | M | 25 | 180 | 75 | 23.1 | Normal weight | 126 | 66 |
13 | F | 23 | 173 | 67 | 22.4 | Normal weight | 122 | 74 |
14 | F | 42 | 172 | 62 | 21.0 | Normal weight | 118 | 70 |
15 | F | 39 | 165 | 62 | 22.8 | Normal weight | 116 | 72 |
16 | M | 35 | 174 | 71 | 23.5 | Normal weight | 112 | 68 |
17 | M | 21 | 184 | 108 | 31.9 | Obesity Class 1 | 128 | 68 |
18 | M | 21 | 180 | 75 | 23.1 | Normal weight | 106 | 68 |
19 | M | 41 | 192 | 86 | 23.3 | Normal weight | 118 | 68 |
20 | M | 29 | 198 | 110 | 28.1 | Overweight | 126 | 72 |
21 | M | 53 | 176 | 75 | 24.2 | Normal weight | 118 | 72 |
Mean ± STD | 37.3 ± 12.6 | 178.8 ± 9.2 | 79.2 ± 15.2 | 24.6 ± 3.2 | 127.5 ± 14.7 | 73.5 ± 7.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabian, V.; Matera, L.; Bayerova, K.; Havlik, J.; Kremen, V.; Pudil, J.; Sajgalik, P.; Zemanek, D. Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study. Sensors 2019, 19, 3467. https://doi.org/10.3390/s19163467
Fabian V, Matera L, Bayerova K, Havlik J, Kremen V, Pudil J, Sajgalik P, Zemanek D. Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study. Sensors. 2019; 19(16):3467. https://doi.org/10.3390/s19163467
Chicago/Turabian StyleFabian, Vratislav, Lukas Matera, Kristyna Bayerova, Jan Havlik, Vaclav Kremen, Jan Pudil, Pavol Sajgalik, and David Zemanek. 2019. "Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study" Sensors 19, no. 16: 3467. https://doi.org/10.3390/s19163467
APA StyleFabian, V., Matera, L., Bayerova, K., Havlik, J., Kremen, V., Pudil, J., Sajgalik, P., & Zemanek, D. (2019). Noninvasive Assessment of Aortic Pulse Wave Velocity by the Brachial Occlusion-Cuff Technique: Comparative Study. Sensors, 19(16), 3467. https://doi.org/10.3390/s19163467