An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Wize Sniffer
2.2. Data Pre-Processing
2.3. Experimental Tests
3. Results
4. Discussion and Conclusions
- the used MOS gas sensors gave good results in detecting breath ammonia, also at <ppm levels;
- the median values of the features extracted from sensor signals increased with increasing liver impairment;
- significant correlations were found between gas sensor features and a set of standard liver function parameters (e.g., PT, bilirubin, spleen dimensions);
- cut-off values were found in gas sensor features which permitted to discriminate between the several group of individuals (from HC to CHE subjects).
- the design of a new gas sampling box, with a more suitable geometrical shape to ensure all of the gas sensors receive the same amount of air flow during each breath test [71];
- the use of new materials for the gas sampling box, e.g., organic tehermoplastic polymers such as PEEK (Polyether ether ketone) [72], to be sure to avoid any absorption phenomenon of volatile molecules on the internal surface of the gas sampling box itself;
- a system based on a solenoide valve to automatically sample the portion of exhaled volume of interest;
- the integration of a controller board with higher computing power.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile Butadiene Styrene |
AUC-ROC | Area Under the Curve-Receiver Operating Characteristic |
CHE | Cirrhotics with recent episode of HE |
CIRRH | Cirrhotics |
COPD | Chronic obstructive pulmonary disease |
CT | Computer tomography |
DST | Digit-simbol test |
GC-MS | Gas chromatography-mass spectrometry |
HC | Healthy controls |
HE | Hepathic Hencephalopathy |
HME | Heat and moisture exchanger |
INR | International normalized ratio |
LD | Liver disease |
MELD | Model for end-stage liver disease |
MHE | Minimal HE |
MOS | Metal oxide semiconductor |
NC-CLD | Non cirrhotic-chronic liver disease |
OTFTs | Organic thin-film transistor |
PALS | Photoacustic Laser Spectrometry |
ppb | part-per-billions |
ppm | part-per-millions |
ppt | part-per-trillions |
PT | Prothrombine time |
PTR-MS | Protron transfer reaction time-of-flight mass spectrometry |
PVC | Polyvinyl chloride |
SIFT-MS | Selected ion flow tube-mass spectrometry |
TMT-A | Trail-making-test A |
TMT-B | Trail-making-test B |
US | Ultrasound |
VOC | Volatile organic compound |
WHO | World Health Organization |
WS | Wize sniffer |
References
- Häussinger, D. Physiological Functions of the Liver. In Comprehensive Human Physiology; Greger, R., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 1369–1391. [Google Scholar]
- Blachier, M.; Leleu, H.; Peck-Radosavljevic, M.; Valla, D.; Roudot-Thoraval, F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 2013, 58, 593–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, S.J. Hepatic Encephalopathy. Med. Clin. N. Am. 2008, 92, 795–812. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P.; Lockwood, A.; Mullen, K.; Tarter, R.; Weissenborn, K.; Blei, A.T. Hepatic encephalopathy—Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna. Hepatology 2002, 35, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Patidar, K.R.; Bajaj, J.S. Covert and overt hepatic encephalopathy: Diagnosis and management. Clin. Gastroentrol. Hepatol. 2015, 13, 2048–2061. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Cordoba, J.; Mullen, K.D.; Amodio, P.; Shawcross, D.L.; Butterworth, R.F.; Morgan, M.Y. Review article: The design of clinical trials in hepatic encephalopathy—An international society for hepatic encephalopathy and nitrogen metabolism (ishen) consensus statement. Aliment. Pharmacol. Ther. 2011, 33, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; Rimola, A.; Ventura, P.J.; Navasa, M.; Cirera, I.; Reggiardo, V. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol. 1999, 30, 890–895. [Google Scholar] [CrossRef]
- Riggio, O.; Amodio, P.; Farcomeni, A.; Merli, M.; Nardelli, S.; Pasquale, C.; Pentassuglio, I.; Gioia, S.; Onori, E.; Piazza, N.; et al. A model for predicting development of overt hepatic encephalopathy in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2015, 13, 1346–1352. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Wade, J.B.; Sanyal, A.J. Spectrum of neurocognitive impairment in cirrhosis: Implications for the assessment of hepatic encephalopathy. Hepatology 2009, 50, 2014–2021. [Google Scholar] [CrossRef]
- Stahl, J. Studies of the blood ammonia in liver disease. Its diagnosis, prognosis and therapeutic significance. Ann. Int. Med. 1963, 58, 1–24. [Google Scholar] [CrossRef]
- Weissenborn, K.; Ennen, J.C.; Schomerus, H.; Rückert, N.; Hecker, H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol. 2001, 34, 768–773. [Google Scholar] [CrossRef]
- Arbuthnott, K.; Frank, J. Trail Making Test, Part B as a measure of executive control: Validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 2000, 22, 518–528. [Google Scholar] [CrossRef]
- Blanco Vela, C.; Bosques Padilla, F. Determination of ammonia concentrations in cirrhosis patients—Still confusing after all there years? Ann. Hepatol. 2011, 10, 60–65. [Google Scholar] [CrossRef]
- DuBois, S.; Eng, S.; Bhattacharya, R.; Rulyak, S.; Hubbard, T.; Putnam, D.; Kearney, D.J. Breath Ammonia Testing for Diagnosis of Hepatic Encephalopathy. Dig. Dis. Sci. 2005, 50, 1780–1784. [Google Scholar] [CrossRef] [PubMed]
- Brannelly, N.; Hamilton-Shield, J.; Killard, A. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit. Rev. Anal. Chem. 2016, 46, 490–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimamoto, C.; Hirata, I.; Katsu, K. Breath and blood ammonia in liver cirrhosis. Hepatogastroenterology 2000, 47, 443–445. [Google Scholar] [PubMed]
- Adrover, R.; Cocozzella, D.; Ridruejo, E.; Garca, A.; Rome, J.; Podest, J. Breath-Ammonia Testing of Healthy Subjects and Patients with Cirrhosis. Dig. Dis. Sci. 2012, 57, 189–195. [Google Scholar] [CrossRef]
- Persaud, K.; Dodd, G.H. Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A. Recent progress in the design and clinical development of electronic-nose technologies. Nanobiosens. Dis. Diagn. 2016, 5, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic potential of breath analysis—Focus on volatile organic compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef]
- Wilson, A.D. Application of electronic-nose technologies and VOC biomarkers for the non invasive early diagnosis of gastrointestinal diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef] [PubMed]
- Westenbrink, E.; Arasaradnam, R.P.; O’Connell, N.; Bailey, C.; Nwokolo, C.; Bardhan, K.D.; Covington, J.A. Development and application of a new electronic nose instrument for the detection of colorectal cancer. Biosens. Bioelectron. 2015, 67, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D. Developing Electronic-nose Technologies for Clinical Practice. J. Med. Surg. Pathol. 2018, 3, 169–171. [Google Scholar] [CrossRef]
- Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Risby, T.H.; Solga, S.F. Current status of clinical breath analysis. Appl. Phys. B 2006, 85, 421–426. [Google Scholar] [CrossRef]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of lung cancer by sensor array analysis of exhaled breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- De Meij, T.G.; Larbi, I.B.; van der Schee, M.P.; Lentferink, Y.E.; Paff, T.; Terhaar sive Droste, J.S.; Mulder, C.J.; van Bodegraven, A.A.; de Boer, N.K. Electronic nose can discriminate colorectal cancer and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer 2014, 134, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Shuster, G.; Gallimidi, Z.; Reiss, A.H.; Dovgolevsky, E.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Engel, A.; Shiban, A.; Tisch, U.; et al. Classification of breast cancer precursors through exhaled breath. Breast Cancer Res. Treat. 2011, 126, 791–796. [Google Scholar] [CrossRef]
- Roine, A.; Veskimäe, E.; Tuokko, A.; Kumpulainen, P.; Koskimäki, J.; Keinänen, T.A.; Häkkinen, M.R.; Vepsäläinen, J.; Paavonen, T.; Lekkala, J.; et al. Detection of prostate cancer by an electronic nose: A proof of principle study. J. Urol. 2014, 192, 230–235. [Google Scholar] [CrossRef]
- Yusuf, N.; Zakaria, A.; Omar, M.I.; Shakaff, A.Y.M.; Masnan, M.J.; Kamarudin, L.M.; Rahim, N.A.; Zakaria, N.Z.I.; Abdullah, A.A.; Othman, A.; et al. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology. BMC Bioinform. 2015, 16, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Mores, N.; Trové, A.; Mondino, C.; Barnes, P.J. The electronic nose in respiratory medicine. Respiration 2013, 85, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Sibila, O.; Garcia-Bellmunt, L.; Giner, J.; Merino, J.L.; Suarez-Cuartin, G.; Torrego, A.; Solanes, I.; Castillo, D.; Valera, J.L.; Cosio, B.G.; et al. Identification of airway bacterial colonization by an electronic nose in chronic obstructive pulmonary disease. Respir. Med. 2014, 108, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Le Maout, P.; Laquintinie, P.S.; Lahuec, C.; Seguin, F.; Wojkiewicz, J.L.; Redon, N.; Dupont, L. A low cost, handheld E-nose for renal diseases early diagnosis. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2817–2820. [Google Scholar]
- Lin, Y.J.; Guo, H.R.; Chang, Y.H.; Kao, M.T.; Wang, H.H.; Hong, R.I. Application of the electronic nose for uremia diagnosis. Sens. Actuators B Chem. 2001, 76, 177–180. [Google Scholar] [CrossRef]
- Behera, B.; Joshi, R.; Anil Vishnu, G.K.; Bhalerao, S.; Pandya, H.J. Electronic nose: A non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath Res. 2019, 13, 024001. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.; Linder, R.; Perriello, G.; di Daniele, N.; Pöppl, S.J.; de Lorenzo, A. Predicting Type 2 diabetes using an electronic nose-based artificial neural network analysis. Diabetes Nutr. Metab. 2002, 15, 215–221. [Google Scholar] [PubMed]
- Tisch, U.; Schlesinger, I.; Ionescu, R.; Nassar, M.; Axelrod, N.; Robertman, D.; Tessler, Y.; Azar, F.; Marmur, A.; Aharon-Peretz, J.; et al. Detection of Alzheimer’s and Parkinson’s disease from exhaled breath using nanomaterial-based sensors. Nanomedicine 2013, 8, 43–56. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, D.; Li, N.; Zhang, L.; Yang, J. A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng. 2010, 57, 2753–2763. [Google Scholar]
- Lourenco, C.; Turner, C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 2014, 4, 465–498. [Google Scholar] [CrossRef]
- Van Den Velde, S.; Nevens, S.; van Hee, P.; van Steenberghe, D.; Quirynen, M. GC-MS analysis of breath odour compounds in liver patients. J. Chromatogr. B Anal. Tech. Biomed. Life Sci. 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Hibbard, T.; Killard, A. Breath ammonia analysis: Clinical application and measurement. Crit. Rev. Anal. Chem. 2011, 41, 21–35. [Google Scholar] [CrossRef]
- Smith, D.; Wang, T.; Pysanenko, A.; Španěl, P. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun. Mass Spectrom. 2008, 22, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Morisco, F.; Aprea, E.; Lembo, V.; Fogliano, V.; Vitaglione, P.; Mazzone, G.; Cappellin, L.; Gasperi, F.; Masone, S.; de Palma, G.D.; et al. Rapid “breath-print” of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study. PLoS ONE 2013, 8, e59658. [Google Scholar] [CrossRef] [PubMed]
- Timmer, B.; van Delft, M.; Koelmans, W.; Olthuis, W.; van den Berg, A. Selective low concentration ammonia sensing in a microfluidic lab-on-a-chip. IEEE Sens. J. 2006, 6, 829–835. [Google Scholar] [CrossRef] [Green Version]
- Toda, K.; Li, J.; Dasgupta, K. Measurement of Ammonia in Human Breath with a Liquid-Film Conductivity Sensor. Anal. Chem. 2006, 78, 7284–7291. [Google Scholar] [CrossRef] [PubMed]
- Yimit, A.; Itoh, K.; Murabayashi, M. Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor. Sens. Actuators B 2003, 88, 239–245. [Google Scholar] [CrossRef]
- Zan, H.; Tsai, W.; Lo, Y.; Wu, Y.; Yang, Y. Pentacene-Based organic Thin Film Transistors for Ammonia Sensing. IEEE Sens. J. 2012, 12, 594–601. [Google Scholar] [CrossRef]
- Crone, B.; Dodabalapur, A.; Gelperin, A.; Torsi, L.; Katz, H.E.; Lovinger, A.J.; Bao, Z. Electronic sensing of vapors with organic transistors. Appl. Phys. Lett. 2001, 78, 22–29. [Google Scholar] [CrossRef]
- Gouma, P.; Kalyanasundaram, K.; Yun, X. Nanosensor and Breath Analyzer for Ammonia Detection in Exhaled Human Breath. IEEE Sens. J. 2010, 10, 49–53. [Google Scholar] [CrossRef]
- Hibbard, T.; Crowley, K.; Killard, A. Direct measurment of ammonia in simulated human breath using an inkjet-printed polyaniline nanoparticle sensor. Anal. Chim. Acta 2013, 779, 56–63. [Google Scholar] [CrossRef]
- Germanese, D.; Righi, M.; Benassi, A.; D’Acunto, M.; Leone, R.; Magrini, M.; Paradisi, P.; Puppi, D.; Salvetti, O. A low cost, portable device for breath analysis and self-monitoring, the Wize Sniffer. In Proceedings of the International Conference on Applications in Electronics Pervading Industry, Environment and Society 2016; Lecture Notes Electrical Engineering; De Gloriam, A., Ed.; Springer: Cham, Switzerland, 2017; Volume 409, pp. 51–57. [Google Scholar]
- Germanese, D.; D’Acunto, M.; Magrini, M.; Righi, M.; Salvetti, O. A low cost technology-based device for breath analysis and self-monitoring. In Proceedings of the Second International Conference on Advances in Signal, Image and Video Processing, SIGNAL2017, Barcelona, Spain, 22–25 May 2017; pp. 8–13. [Google Scholar]
- Shier, D.; Butler, J.; Lewis, R. (Eds.) Holes Human Anatomy and Physiology, 11th ed.; McGraw-Hill: New York, NY, USA, 2007. [Google Scholar]
- Clifford, P.; Tuma, D. Characteristics of semiconductor gas sensors I. Steady state gas response. Sens. Actuators 1982, 3, 233–254. [Google Scholar] [CrossRef]
- Germanese, D.; D’Acunto, M.; Magrini, M.; Righi, M.; Salvetti, O. Cardio-metabolic diseases prevention by self-monitoring the breath. Sens. Transducers J. 2017, 215, 19–26. [Google Scholar]
- Germanese, D.; D’Acunto, M.; Righi, M.; Magrini, M.; Salvetti, O. The Wize Sniffer Knows What You Did: Prevent Cardio-Metabolic Risk by Analyzing Your Breath. Int. J. Adv. Life Sci. 2017, 9, 198–207. [Google Scholar]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: A review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic nose feature extraction methods: A review. Sensors 2015, 15, 2784–27831. [Google Scholar] [CrossRef] [PubMed]
- Setkus, A.; Olekas, A.; Senuliene, D.; Falasconi, M.; Pardo, M.; Sberveglieri, G. Analysis of the dynamic features of metal oxide sensors in response to spme fiber gas release. Sens. Act. B Chem. 2010, 146, 539–544. [Google Scholar] [CrossRef]
- Zou, X.; Zhao, J.; Wu, S.; Huang, X. Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data. Sensors 2003, 3, 101–109. [Google Scholar]
- Kermit, M.; Tomic, O. Independent component analysis applied on gas sensor array measurement data. IEEE Sens. J. 2003, 3, 500–511. [Google Scholar] [CrossRef]
- Llobet, E.; Brezmes, J.; Vilanova, X.; Sueiras, J.E.; Correig, X. Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array. Sens. Actuators B 1997, 41, 13–21. [Google Scholar] [CrossRef]
- Bowie, C.; Harvey, P. Administration and interpretation of the trail making test. Nat. Prot. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Thekedar, B.; Szymczak, W.; Hollriegl, V.; Hoeschen, C.; Oeh, U. Investigations on the variability of breath gas sampling using ptr-ms. J. Breath Res. 2009, 3, 027007. [Google Scholar] [CrossRef] [PubMed]
- Miekisch, W.; Kischkel, S.; Sawacki, A.; Lieban, T.; Mieth, M.; Schubert, J. Impact of sampling procedures on the results of breath analysis. J. Breath Res. 2008, 2, 026007. [Google Scholar] [CrossRef] [PubMed]
- Thekedar, B.; Oeh, U.; Szymczak, W.; Hoeschen, C.; Paretzke, H.G. Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations. J. Breath Res. 2011, 5, 016001. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, R.K.; Chawla, Y.K. Minimal hepatic encephalopathy. Indian J. Gastroenterol. 2009, 28, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Stremmel, W. The diagnosis and treatment of minimal hepatic encephalopathy. Dtsch. Ärzteblatt Int. 2012, 109, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, F.; Falcitelli, M.; Marano, L.; Pioggia, G. A radially symmetric measurement chamber for electronic noses. Sens. Actuators B Chem. 2005, 105, 295–303. [Google Scholar] [CrossRef]
- Panayotov, I.; Valerie, O.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J. Mater. Sci. Mater. Med. 2016, 27, 118. [Google Scholar] [CrossRef]
Sensor | Detected Molecules | Best Detection Range (ppm) | Drift Coeff. due to Humidity ( / hum (mV)) |
---|---|---|---|
MQ7 | carbon monoxide | 20–200 | 296 |
hydrogen | 20–200 | ||
TGS2620 | carbon monoxide | 50–5000 | 60 |
hydrogen | 50–5000 | ||
ethanol | 50–5000 | ||
TGS2602 | ethanol | 1–10 | 82 |
hydrogen sulfide | 1–10 | ||
hydrogen | 1–10 | ||
ammonia | 1–10 | ||
TGS821 | hydrogen | 10–5000 | 120 |
TGS2444 | ammonia | 0.1–30 | 84 |
TGS4161 | carbon dioxide | 0–4000 | 56 |
TGS2444 | TGS2444 | TGS2444 | TGS2602 | TGS2602 | TGS2602 | |
---|---|---|---|---|---|---|
(V) | (msec) | max | (V) | (msec) | max | |
(IQR) | (IQR) | (IQR) | (IQR) | (IQR) | (IQR) | |
HC | 0.39 (0.14) | 750 (250) | 0.06 (0.03) | 0.32 (0.16) | 1250 (1562.50) | 0.01 (0.07) |
NC-CLD | 0.63 (0.41) | 1250 (625) | 0.06 (0.05) | 0.57 (0.34) | 3750 (1125) | 0.02 (0.01) |
CIRRH | 0.76 (0.58) | 1000 (500) | 0.09 (0.11) | 0.62 (0.44) | 2750 (1500) | 0.03 (0.02) |
CHE | 1 (0.74) | 750 (500) | 0.11 (0.17) | 0.8 (0.6) | 2750 (1375) | 0.04 (0.06) |
CUT-OFF | AUC-ROC | p-Value | VP | VN | FP | FN | SENS. | SPEC. | |
---|---|---|---|---|---|---|---|---|---|
95%CI | |||||||||
HC | = 0.572 V | 0.867 | <0.0001 | 37 | 15 | 1 | 11 | 0.771 | 0.938 |
vs. LD | 0.783–0.952 | ||||||||
NC-CLD | = 0.093 | 0.642 | <0.037 | 17 | 13 | 7 | 11 | 0.607 | 0.650 |
vs. CIRRH | 0.486–0.798 | ||||||||
CIRRH | = 0.065 | 0.864 | 0 | 4 | 21 | 1 | 2 | 0.666 | 0.954 |
vs. CHE | 0.662–1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Germanese, D.; Colantonio, S.; D’Acunto, M.; Romagnoli, V.; Salvati, A.; Brunetto, M. An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors 2019, 19, 3656. https://doi.org/10.3390/s19173656
Germanese D, Colantonio S, D’Acunto M, Romagnoli V, Salvati A, Brunetto M. An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors. 2019; 19(17):3656. https://doi.org/10.3390/s19173656
Chicago/Turabian StyleGermanese, Danila, Sara Colantonio, Mario D’Acunto, Veronica Romagnoli, Antonio Salvati, and Maurizia Brunetto. 2019. "An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study" Sensors 19, no. 17: 3656. https://doi.org/10.3390/s19173656
APA StyleGermanese, D., Colantonio, S., D’Acunto, M., Romagnoli, V., Salvati, A., & Brunetto, M. (2019). An E-Nose for the Monitoring of Severe Liver Impairment: A Preliminary Study. Sensors, 19(17), 3656. https://doi.org/10.3390/s19173656