Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization
Abstract
:1. Introduction
- We propose a novel indoor fingerprint localization algorithm. According to the characteristics of the communication link, the collected CSI data is denoised by the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm in the online and offline phases.
- We propose an EC noise reduction method, which firstly integrates three CSI communication links, and then performs feature extraction on the combined link to obtain a robust fingerprint database.
- We validate the proposed theory and method in a real experimental scenario. The experimental results show that the proposed positioning algorithm is superior to its comparison algorithm and has high robustness.
2. System Model and Relevant Definitions
3. EC-SVM Indoor Localization System
3.1. System Model
3.2. Noise Reduction of CSI Sample
3.2.1. The Combination of the Communicating Link
3.2.2. Charateric of Combined Communication Extract
Algorithm 1: Feature extraction algorithm. |
3.3. SVM Optimized Positioning Algorithm
4. Experimental Study
4.1. Experimental Scene
4.2. Experiment Analysis
4.2.1. Impact of the Rate of Packages
4.2.2. Impact of Single Link and Combined Link
4.2.3. Impact of the Clipping Facter
4.2.4. Comparison of between EC-SVM and SVM
4.2.5. Overall Performance of EC-SVM Positioning Algorithm
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CSI | Channel State Information |
SVM | Support Vector Machine |
RFID | Radio Frequency Identification |
GPS | Global Positioning System |
RSS | Received Signal Strength |
KNN | K-Nearest Neighbor |
MIMO | Multiple-Input Multiple-Output |
OFDM | Orthogonal Frequency Division Multiplexing |
DBSCAN | Density-Based Spatial Clustering of Applications with Noise |
References
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.; Al-Khalifa, H. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef] [PubMed]
- Niu, L. A Survey of Wireless Indoor Positioning Technology for Fire Emergency Routing. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012127. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Wang, X.; Wang, W.; Qin, X. Indoor positioning system based on WiFi. Microcomput. Its Appl. 2014, 33. [Google Scholar] [CrossRef]
- Vishal, K.; Jawahar, C.V.; Chari, V. Accurate localization by fusing images and GPS signals. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Ma, S.Q.; Wang, C.J. Design of Laboratory Management System Based on RFID. Adv. Mater. Res. 2014, 945–949, 2689–2692. [Google Scholar] [CrossRef]
- O’Connell, M.; Hickey, S.; Besiou, M.; Fitzpatrick, C.; Van Wassenhove, L.N. Feasibility of Using Radio Frequency Identification to Facilitate Individual Producer Responsibility for Waste Electrical and Electronic Equipment. J. Ind. Ecol. 2013, 17, 11. [Google Scholar] [CrossRef]
- Sabek, I.; Youssef, M. MonoStream: A Minimal-Hardware High Accuracy Device-free WLAN Localization System. arXiv 2013, arXiv:1308.0768. [Google Scholar]
- Xiao, J.; Wu, K.; Yi, Y.; Wang, L.; Ni, L.M. Pilot: Passive Device-Free Indoor Localization Using Channel State Information. In Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems (ICDCS), Philadelphia, PA, USA, 8–11 July 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor Localization via Channel Response. ACM Comput. Surv. 2013, 46, 1–32. [Google Scholar] [CrossRef]
- Bahl, P.; Padmanabhan, V.N. RADAR: An in-building RF-based user location and tracking system. In Proceedings of the INFOCOM 2000 Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 26–30 March 2000; IEEE: Piscataway, NJ, USA, 2000. [Google Scholar]
- Youssef, M.; Agrawala, A. The Horus location determination system. Wirel. Netw. 2008, 14, 357–374. [Google Scholar] [CrossRef]
- Li, Z.; Huang, J. WiFi positioning using robust filtering with RSSI. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 361–366. [Google Scholar]
- Zhu, R.; Bai, G.W.; Shen, H. Bayesian filtering based CSI indoor localization method. Comput. Eng. Des. 2015, 36, 567–571. [Google Scholar]
- Wu, Z.; Xu, Q.; Li, J.; Fu, C.; Xuan, Q.; Xiang, Y. Passive indoor human localization based on channel state information. Harbin Gongcheng Daxue Xuebao/J. Harbin Eng. Univ. 2017, 38, 1328–1334. [Google Scholar]
- Wu, Z.; Xu, Q.; Li, J.; Fu, C.; Xuan, Q.; Xiang, Y. Passive Indoor Localization Based on CSI and Naive Bayes Classification. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1566–1577. [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, L.; Jiang, Z.; Chen, B.; Liu, K.; Xuan, Q.; Xiang, Y. Accurate Indoor Localization Based on CSI and Visibility Graph. Sensors 2018, 18, 2549. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wu, K.; Yi, Y.; Ni, L.M. FIFS: Fine-grained indoor fingerprinting system. In Proceedings of the International Conference on Computer Communications & Networks, Munich, Germany, 30 July–2 August 2012; IEEE: Piscataway, NJ, USA, 2012. [Google Scholar]
- Gjengset, J.; Xiong, J.; McPhillips, G.; Jamieson, K. Phaser: Enabling phased array signal processing on commodity WiFi access points. In Proceedings of the 20th annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; ACM: New York, NY, USA, 2014. [Google Scholar]
- Kotaru, M.; Joshi, K.; Bharadia, D.; Katti, S. SpotFi: Decimeter Level Localization Using WiFi. ACM Sigcomm Comput. Commun. Rev. 2015, 45, 269–282. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Lian, B.W.; Zhang, Y.; Liu, S. Amp-Phi: A CSI-based Indoor Positioning System. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1858005. [Google Scholar] [CrossRef]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. DeepFi: Deep Learning for Indoor Fingerprinting Using Channel State Information. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Choi, J.S.; Lee, W.H.; Lee, J.H.; Lee, J.H.; Kim, S.C. Deep Learning Based NLOS Identification with Commodity WLAN Devices. IEEE Trans. Veh. Technol. 2018, 67, 3295–3303. [Google Scholar] [CrossRef]
- Chapre, Y.; Ignjatovic, A.; Seneviratne, A.; Jha, S. CSI-MIMO: Indoor Wi-Fi fingerprinting system. In Proceedings of the 39th Annual IEEE Conference on Local Computer Networks, Edmonton, AB, Canada, 8–11 September 2014; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Zhang, X.; Xiu, C.; Wang, Y.; Yang, D. CSI-XGBoost-based high-precision WiFi indoor positioning algorithm. J. Beijing Univ. Aeronaut. Astronaut. 2018, 44, 2536–2544. [Google Scholar]
- Jiang, Z.; Zhao, J.; Li, X.Y.; Han, J.; Xi, W. Rejecting the Attack: Source Authentication for Wi-Fi Management Frames using CSI Information. Proc. IEEE Infocom. 2012, 12, 2544–2552. [Google Scholar]
- Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach. IEEE Trans. Veh. Technol. 2016, 66, 763–776. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, J.; Ma, X.; Feng, X.; Wang, H. CSI-based Device-free Wireless Localization and Activity Recognition Using Radio Image Features. IEEE Trans. Veh. Technol. 2017, 66, 10346–10356. [Google Scholar] [CrossRef]
- Demeechai, T.; Kukieattikool, P.; Ngo, T.; Chang, T.G. Localization based on standard wireless LAN infrastructure using MIMO-OFDM channel state information. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 146. [Google Scholar] [CrossRef]
- Xie, H.; Lin, L.; Jiang, Z.; Xi, W.; Zhao, K.; Ding, M.; Zhao, J. Accelerating Crowdsourcing Based Indoor Localization Using CSI. In Proceedings of the IEEE International Conference on Parallel & Distributed Systems, Melbourne, Australia, 14–17 December 2015. [Google Scholar]
- Li, H.; Wang, X.; Zou, Y.; Hou, W. Eavesdropping-Resilient OFDM System Using CSI-Based Dynamic Subcarrier Allocation. In Proceedings of the Vehicular Technology Conference, Dresden, Germany, 2–5 June 2013; IEEE: Piscataway, NJ, USA, 2013. [Google Scholar]
- Chriki, A.; Touati, H.; Snoussi, H. SVM-based indoor localization in Wireless Sensor Networks. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Zhou, R.; Chen, J.; Lu, X.; Wu, J. CSI fingerprinting with SVM regression to achieve device-free passive localization. In Proceedings of the 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Macau, China, 12–15 June 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
Algorithms | Average Error | Standard Error | Positioning Accuracy (1.5 m) |
---|---|---|---|
EC-SVM | 1.37 | 1.13 | 89.00% |
DeepFi | 1.53 | 1.27 | 69.41% |
FIFS | 1.86 | 1.42 | 68.74% |
Horus | 2.61 | 1.77 | 50.48% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, Z.; Yan, Y.; Dang, X.; Shao, C. Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization. Sensors 2019, 19, 3689. https://doi.org/10.3390/s19173689
Hao Z, Yan Y, Dang X, Shao C. Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization. Sensors. 2019; 19(17):3689. https://doi.org/10.3390/s19173689
Chicago/Turabian StyleHao, Zhanjun, Yan Yan, Xiaochao Dang, and Chenguang Shao. 2019. "Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization" Sensors 19, no. 17: 3689. https://doi.org/10.3390/s19173689
APA StyleHao, Z., Yan, Y., Dang, X., & Shao, C. (2019). Endpoints-Clipping CSI Amplitude for SVM-Based Indoor Localization. Sensors, 19(17), 3689. https://doi.org/10.3390/s19173689