Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement Protocol
2.3. Measurement Setup
2.4. Data Processing and Biomechanical Modelling
2.5. Neural Network Modelling
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison of Different Movements
4.2. Comparison with Related Methods
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loes, M.; Dahlstedt, L.J.; Thomee, R. A 7-year study on risks and costs of knee injuries in male and female youth participants in 12 sports. Scand. J. Med. Sci. Sports 2000, 10, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, K.; Whatman, C. Biomechanics associated with patellofemoral pain and acl injuries in sports. Sports Med. 2015, 45, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Hootman, J.M.; Dick, R.; Agel, J. Epidemiology of collegiate injuries for 15 sports: Summary and recommendations for injury prevention initiatives. J. Athl. Train. 2007, 42, 311–319. [Google Scholar] [PubMed]
- Ingram, J.G.; Fields, S.K.; Yard, E.E.; Comstock, R.D. Epidemiology of knee injuries among boys and girls in US high school athletics. Am. J. Sports Med. 2008, 36, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Taunton, J.E.; Ryan, M.B.; Clement, D.B.; McKenzie, D.C.; Lloyd-Smith, D.R.; Zumbo, B.D. A retrospective case-control analysis of 2002 running injuries. Br. J. Sports Med. 2002, 36, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Besier, T.F.; Lloyd, D.G.; Cochrane, J.L.; Ackland, T.R. External loading of the knee joint during running and cutting maneuvers. Med. Sci. Sports Exerc. 2001, 33, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- D’Lima, D.D.; Fregly, B.J.; Patil, S.; Steklov, N.; Colwell, C.W. Knee joint forces: Prediction, measurement, and significance. Proc. Inst. Mech. Eng. H 2012, 226, 95–102. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Steklov, N.; Patil, S.; Colwell, C.W. The Mark Coventry award: In vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 2605–2611. [Google Scholar] [CrossRef]
- Mundermann, A.; Dyrby, C.O.; D’Lima, D.D.; Colwell, C.W., Jr.; Andriacchi, T.P. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J. Orthop. Res. 2008, 26, 1167–1172. [Google Scholar] [CrossRef]
- Umberger, B.R.; Caldwell, G.E. Musculoskeletal Modeling. In Research Methods in Biomechanics, 2nd ed.; Robertson, D.G.E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., Eds.; Human Kinetics: Champaign, IL, USA, 2014; pp. 247–276. ISBN 9780736093408. [Google Scholar]
- Vanrenterghem, J.; Nedergaard, N.J.; Robinson, M.A.; Drust, B. Training load monitoring in team sports: A novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 2017, 47, 2135–2142. [Google Scholar] [CrossRef]
- Whittlesey, S.N.; Robertson, D.G.E. Two-dimentional inverse dynamics. In Research Methods in Biomechanics, 2nd ed.; Robertson, D.G.E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., Eds.; Human Kinetics: Champaign, IL, USA, 2014; pp. 103–123. ISBN 9780736093408. [Google Scholar]
- Morgenroth, D.C.; Medverd, J.R.; Seyedali, M.; Czerniecki, J.M. The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging. Clin. Biomech. 2014, 29, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stief, F.; Kleindienst, F.I.; Wiemeyer, J.; Wedel, F.; Campe, S.; Krabbe, B. Inverse dynamic analysis of the lower extremities during nordic walking, walking, and running. J. Appl. Biomech. 2008, 24, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Cole, G.K.; Nigg, B.M.; van den Bogert, A.J.; Gerritsen, K.G.M. Lower extremity joint loading during impact in running. Clin. Biomech. 1996, 11, 181–193. [Google Scholar] [CrossRef]
- McLean, S.G.; Lipfert, S.W.; van den Bogert, A.J. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med. Sci. Sports Exerc. 2004, 36, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Kaila, R. Influence of modern studded and bladed soccer boots and sidestep cutting on knee loading during match play conditions. Am. J. Sports Med. 2007, 35, 1528–1536. [Google Scholar] [CrossRef] [PubMed]
- Milner, C.E.; Westlake, C.G.; Tate, J.J. Test-retest reliability of knee biomechanics during stop jump landings. J. Biomech. 2011, 44, 1814–1816. [Google Scholar] [CrossRef] [PubMed]
- Sell, T.C.; Ferris, C.M.; Abt, J.P.; Tsai, Y.S.; Myers, J.B.; Fu, F.H.; Lephart, S.M. The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am. J. Sports Med. 2006, 34, 43–54. [Google Scholar] [CrossRef]
- Zajac, F.E.; Neptune, R.R.; Kautz, S.A. Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations. Gait Posture 2002, 16, 215–232. [Google Scholar] [CrossRef]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 2006, 24, 1983–1990. [Google Scholar] [CrossRef]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends supporting the In-Field use of wearable inertial sensors for sport performance evaluation: A systematic review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Ancillao, A.; Tedesco, S.; Barton, J.; O’Flynn, B. Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: A systematic review. Sensors 2018, 18, 2564. [Google Scholar] [CrossRef] [PubMed]
- Shahabpoor, E.; Pavic, A. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor. J. Biomech. 2018, 79, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Karatsidis, A.; Bellusci, G.; Schepers, H.M.; de Zee, M.; Andersen, M.S.; Veltink, P.H. Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensors 2016, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Storm, F.; Zhao, Y.; Billings, S.; Pavic, A.; Mazza, C.; Guo, L.-Z. A new proxy measurement algorithm with application to the estimation of vertical ground reaction forces using wearable sensors. Sensors 2017, 17, 2181. [Google Scholar] [CrossRef] [PubMed]
- Wouda, F.J.; Giuberti, M.; Bellusci, G.; Maartens, E.; Reenalda, J.; Van Beijnum, B.-J.F.; Veltink, P.H. Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors. Front. Physiol. 2018, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Leporace, G.; Batista, L.A.; Metsavaht, L.; Nadal, J. Residual analysis of ground reaction forces simulation during gait using neural networks with different configurations. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Volume 2015, pp. 2812–2815. [Google Scholar] [CrossRef]
- Matijevich, E.S.; Branscombe, L.M.; Scott, L.R.; Zelik, K.E. Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech. PLoS ONE 2019, 14, e0210000. [Google Scholar] [CrossRef] [PubMed]
- Neptune, R.R.; Wright, I.C.; van den Bogert, A.J. Muscle coordination and function during cutting movements. Med. Sci. Sports Exerc. 1999, 31, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Krafft, F.C.; Eckelt, M.; Kollner, A.; Wehrstein, M.; Stein, T.; Potthast, W. Reproducibility of spatio-temporal and dynamic parameters in various, daily occurring, turning conditions. Gait Posture 2015, 41, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Kristianslund, E.; Krosshaug, T.; van den Bogert, A.J. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J. Biomech. 2012, 45, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Härtel, T.; Hermsdorf, H. Biomechanical modelling and simulation of human body by means of DYNAMICUS. J. Biomech. 2006, 39, S549. [Google Scholar] [CrossRef]
- Willwacher, S.; Funken, J.; Heinrich, K.; Müller, R.; Hobara, H.; Grabowski, A.M.; Brüggemann, G.-P.; Potthast, W. Elite long jumpers with below the knee prostheses approach the board slower, but take-off more effectively than non-amputee athletes. Sci. Rep. 2017, 7, 16058. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.G.E. Body segment parameters. In Research Methods in Biomechanics, 2nd ed.; Robertson, D.G.E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N., Eds.; Human Kinetics: Champaign, IL, USA, 2014; pp. 63–78. ISBN 9780736093408. [Google Scholar]
- Milner, C.E.; Paquette, M.R. A kinematic method to detect foot contact during running for all foot strike patterns. J. Biomech. 2015, 48, 3502–3505. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Jones, R.K.; Howard, D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 2008, 41, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.W.; Martin, P.E.; Krahenbuhl, G.S.; Baldini, F.D. Variability in running economy and mechanics among trained male runners. Med. Sci. Sports Exerc. 1991, 23, 378–383. [Google Scholar] [CrossRef]
- Fluit, R.; Andersen, M.S.; Kolk, S.; Verdonschot, N.; Koopman, H.F.J.M. Prediction of ground reaction forces and moments during various activities of daily living. J. Biomech. 2014, 47, 2321–2329. [Google Scholar] [CrossRef] [PubMed]
- Charry, E.; Hu, W.; Umer, M.; Ronchi, A.; Taylor, S. Study on estimation of peak ground reaction forces using tibial accelerations in running. In Proceedings of the IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP 2013, Melbourne, Australia, 2–5 April 2013; pp. 288–293, ISBN 978-1-4673-5501-8. [Google Scholar]
- Hahn, M.E.; O’Keefe, K.B. A neural network model for estimation of net joint moments during normal gait. J. Musculoskelet. Res. 2008, 11, 117–126. [Google Scholar] [CrossRef]
- Kipp, K.; Giordanelli, M.; Geiser, C. Predicting net joint moments during a weightlifting exercise with a neural network model. J. Biomech. 2018, 74, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.E.; Choi, A.; Mun, J.H. Prediction of ground reaction forces during gait based on kinematics and a neural network model. J. Biomech. 2013, 46, 2372–2380. [Google Scholar] [CrossRef]
- Yang, E.C.-Y.; Mao, M.-H. 3D analysis system for estimating intersegmental forces and moments exerted on human lower limbs during walking motion. Measurement 2015, 73, 171–179. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Adesida, Y.; Papi, E.; McGregor, A.H. Exploring the role of wearable technology in sport kinematics and kinetics: A systematic review. Sensors 2019, 19, 1597. [Google Scholar] [CrossRef] [PubMed]
- Roetenberg, D.; Luinge, H.; Slycke, P.J. Xsens MVN: Full 6 DOF human motion tracking using miniature inertial sensors. Xsens Motion Technol. BV Tech. Rep. 2009, 1, 1–7. [Google Scholar]
- Godfrey, A.; Conway, R.; Meagher, D.; ÓLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef]
Movement Task | Component | |||||
---|---|---|---|---|---|---|
F*v | F*ap | F*ml | ||||
r | rRMSE [%] | r | rRMSE [%] | r | rRMSE [%] | |
Moderate running | 0.94 (0.33) | 14.2 (4.0) | 0.90 (0.30) | 18.9 (5.5) | 0.43 (0.26) | 41.7 (11.5) |
Fast running | 0.89 (0.43) | 20.3 (5.8) | 0.88 (0.44) | 22.9 (9.5) | 0.42 (0.41) | 43.4 (12.0) |
Running 90° clockwise turn | 0.89 (0.40) | 17.2 (4) | 0.82 (0.36) | 21.0 (6.5) | 0.38 (0.35) | 36.7 (18.4) |
Running 90° counter-clockwise turn | 0.87 (0.35) | 17.5 (5.3) | 0.88 (0.43) | 19.5 (8.1) | 0.37 (0.42) | 37.2 (11.5) |
Sprint start | 0.73 (0.45) | 25.9 (8.8) | 0.76 (0.40) | 25.8 (9.3) | 0.31 (0.29) | 43.3 (10.0) |
Full-stop | 0.78 (0.45) | 24.7 (7.2) | 0.80 (0.34) | 21.8 (7.5) | 0.45 (0.29) | 37.7 (9.0) |
Left-sided cutting maneuver | 0.86 (0.44) | 19.4 (6.6) | 0.86 (0.41) | 22.0 (7.3) | 0.30 (0.42) | 44.8 (13.0) |
Right-sided cutting maneuver | 0.86 (0.39) | 19.0 (5.4) | 0.84 (0.35) | 21.5 (5.2) | 0.25 (0.39) | 45.7 (9.0) |
Side shuffle cut | 0.79 (0.47) | 20.4 (6.6) | 0.81 (0.43) | 19.8 (6.0) | 0.35 (0.45) | 36.5 (9.3) |
Walking | 0.87 (0.32) | 14.2 (4.3) | 0.71 (0.39) | 20.8 (5.6) | 0.60 (0.31) | 27.7 (5.7) |
Walking 90° clockwise turn | 0.81 (0.27) | 16.9 (4.5) | 0.65 (0.31) | 23.0 (6.2) | 0.31 (0.20) | 34.1 (8.1) |
Walking 90° counter-clockwise turn | 0.83 (0.29) | 15.3 (4.0) | 0.64 (0.30) | 22.7 (5.8) | 0.48 (0.34) | 29.1 (6.0) |
One-leg jump take-off | 0.92 (0.39) | 15.4 (6.6) | 0.89 (0.25) | 17.4 (5.5) | 0.31 (0.46) | 45.9 (19.7) |
One-leg jump landing | 0.84 (0.43) | 16.7 (7.2) | 0.77 (0.53) | 25.1 (9.4) | 0.42 (0.38) | 38.9 (14.4) |
Two-leg jump take-off | 0.60 (0.36) | 23.0 (8.6) | 0.82 (0.40) | 20.5 (7.4) | 0.51 (0.23) | 27.8 (2.9) |
Two-leg jump landing | 0.61 (0.34) | 25.9 (6.2) | 0.65 (0.36) | 27.1 (5.5) | 0.54 (0.32) | 37.6 (6.8) |
Mean | 0.82 (0.10) | 19.1 (4.0) | 0.79 (0.09) | 21.8 (2.6) | 0.40 (0.10) | 38.0 (6.1) |
Movement Task | Discrete Biomechanical Metrics | |
---|---|---|
Peak Fv | Summed Fv | |
%Diff | %Diff | |
Moderate running | 10.0 (12.8) | 3.0 (11.0)‾ |
Fast running | 16.1 (34.2) | 2.8 (15.5)‾ |
Running 90° clockwise turn | 17.4 (36.3) | 6.8 (15.2)‾ |
Running 90° counter-clockwise turn | 19.3 (28.0) | 2.3 (9.6)‾ |
Sprint start | 24.9 (26.7) | 1.5 (31.0)‾ |
Full-stop | 3.3 (23.3) | 2.6 (32.0)‾ |
Left-sided cutting maneuver | 21.0 (25.6) | 0.8 (15.8) |
Right-sided cutting maneuver | 17.2 (20.2) | 1.9 (16.4) |
Side shuffle cut | 2.6 (19.3)‾ | 15.0 (7.3)‾ |
Walking | 13.8 (16.2) | 0.9 (9.3) |
Walking 90° clockwise turn | 8.7 (12.6) | 2.1 (12.7) |
Walking 90° counter-clockwise turn | 19.5 (24.5) | 2.6 (7.5) |
One-leg jump take-off | 8.0 (18.7) | 6.5 (17.0)‾ |
One-leg jump landing | 6.4 (12.6)‾ | 6.1 (10.5)‾ |
Two-leg jump take-off | 60.8 (59.8) | 16.1 (31.2) |
Two-leg jump landing | 22.9 (34.7) | 19.5 (30.0) |
Mean | 17.0 (13.6) | 5.7 (5.9) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors 2019, 19, 3690. https://doi.org/10.3390/s19173690
Stetter BJ, Ringhof S, Krafft FC, Sell S, Stein T. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors. 2019; 19(17):3690. https://doi.org/10.3390/s19173690
Chicago/Turabian StyleStetter, Bernd J., Steffen Ringhof, Frieder C. Krafft, Stefan Sell, and Thorsten Stein. 2019. "Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning" Sensors 19, no. 17: 3690. https://doi.org/10.3390/s19173690
APA StyleStetter, B. J., Ringhof, S., Krafft, F. C., Sell, S., & Stein, T. (2019). Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning. Sensors, 19(17), 3690. https://doi.org/10.3390/s19173690