Review on Smart Gas Sensing Technology
Abstract
:1. Introduction
2. Gas Sensors Array and Signal Preprocessing
2.1. Gas Sensitive Materials and Their Sensors Array
2.2. Drift Compensation and Feature Extraction
3. Gas Sensing Pattern Recognition
3.1. Linear Classification Based on Statistical Theory
3.2. Nonlinear Classification Based on Artificial Neural Networks
4. Challenge of Smart Gas Sensing and Their Solutions
4.1. Repeatability and Reusability
4.2. Circuit Integration and Miniaturization
4.3. Real-Time Sensing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, J.; Gu, J.; Zhang, R.; Mao, Y.; Tian, S. Freshness Evaluation of Three Kinds of Meats Based on the Electronic Nose. Sensors 2019, 19, 605. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.; Li, Z.; Shi, Y. Application of Electronic Nose in Detection of Fresh Vegetables Freezing Time Considering Odor Identification Technology. Chem. Eng. Trans. 2018, 68, 265–270. [Google Scholar]
- Manzoli, A.; Steffens, C.; Paschoalin, R.T.; Graboski, A.M.; Brandão, H.D.M.; de Carvalho, B.C.; Bellini, J.L.; de Paula Herrmann, P.S., Jr. Volatile compounds monitoring as indicative of female cattle fertile period using electronic nose. Sens. Actuators Chem. 2019, 282, 609–616. [Google Scholar] [CrossRef]
- Chen, L.Y.; Wong, D.M.; Fang, C.Y.; Chiu, C.I.; Chou, T.I.; Wu, C.C.; Chiu, S.W.; Tang, K.T. Development of an electronic-nose system for fruit maturity and quality monitoring. In Proceedings of the IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018; pp. 1129–1130. [Google Scholar]
- Harrou, F.; Dairi, A.; Sun, Y.; Kadri, F. Detecting Abnormal Ozone Measurements With a Deep Learning-Based Strategy. IEEE Sens. J. 2018, 18, 7222–7232. [Google Scholar] [CrossRef] [Green Version]
- Eamsa-Ard, T.; Seesaard, T.; Kitiyakara, T.; Kerdcharoen, T. Screening and discrimination of Hepatocellular carcinoma patients by testing exhaled breath with smart devices using composite polymer/carbon nanotube gas sensors. In Proceedings of the 9th Biomedical Engineering International Conference (BMEiCON), Laung Prabang, Laos, 7–9 December 2016; pp. 1–5. [Google Scholar]
- Wilson, A. Application of electronic-nose technologies and VOC-biomarkers for the noninvasive early diagnosis of gastrointestinal diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef] [PubMed]
- Johny, J.; Prabhu, R.; Fung, W.K.; Watson, J. Investigation of positioning of FBG sensors for smart monitoring of oil and gas subsea structures. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, F.; Lin, W.; Liu, Z.; Wu, S.; Qiu, X. Pipeline Leak Detection by Using Time-Domain Statistical Features. IEEE Sens. J. 2017, 17, 6431–6442. [Google Scholar] [CrossRef]
- Bhattacharyya, T.K.; Sen, S.; Mandal, D.; Lahiri, S.K. Development of a wireless integrated toxic and explosive MEMS based gas sensor. In Proceedings of the 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID’06), Hyderabad, India, 3–7 January 2006. [Google Scholar] [CrossRef]
- Kanakam, P.; Hussain, S.M.; Chakravarthy, A. Electronic noses: Forestalling fire disasters: A technique to prevent false fire alarms and fatal casualties. In Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12 December 2015; pp. 1–6. [Google Scholar]
- Développement, Y. Gas and Particle Sensors 2018. Available online: https://www.i-micronews.com/products/gas-and-particle-sensors-2018/ (accessed on 30 August 2019).
- Rydosz, A. Amorphous and Nanocrystalline Magnetron Sputtered CuO Thin Films Deposited on Low Temperature Cofired Ceramics Substrates for Gas Sensor Applications. IEEE Sens. J. 2014, 14, 1600–1607. [Google Scholar] [CrossRef]
- Kalinowski, P.; Murawka, K.; Koc, K.; Jasiński, P.; Jasiński, G. A calibration model for gas sensor array in varying environmental conditions. Elektron. Konstr. Technol. Zastos. 2015, 56, 43–45. [Google Scholar] [CrossRef]
- Jasinski, G. Influence of operation temperature instability on gas sensor performance. In Proceedings of the 21st European Microelectronics and Packaging Conference (EMPC) Exhibition, Warsaw, Poland, 10–13 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Gutierrez-Osuna, R. Pattern analysis for machine olfaction: a review. IEEE Sens. J. 2002, 2, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 1982, 299, 352. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, R.; Meng, F.; Zhang, J.; Zuo, K.; Han, E. Approaches to Enhancing Gas Sensing Properties: A Review. Sensors 2019, 19, 1495. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor Metal Oxides as Chemoresistive Sensors for Detecting Volatile Organic Compounds. Sensors 2019, 19, 233. [Google Scholar] [CrossRef] [PubMed]
- Fanget, S.; Hentz, S.; Puget, P.; Arcamone, J.; Matheron, M.; Colinet, E.; Andreucci, P.; Duraffourg, L.; Myers, E.; Roukes, M. Gas sensors based on gravimetric detection—A review. Sens. Actuators Chem. 2011, 160, 804–821. [Google Scholar] [CrossRef]
- Ghidotti, M.; Fabbri, D.; Torri, C. Determination of linear and cyclic volatile methyl siloxanes in biogas and biomethane by solid-phase microextraction and gas chromatography-mass spectrometry. Talanta 2019, 195, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Degler, D. Trends and Advances in the Characterization of Gas Sensing Materials Based on Semiconducting Oxides. Sensors 2018, 18, 3544. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Lu, S.; Hu, X.; Zheng, H.; Qiu, J.; Tian, R.; Quan, W.; Min, X.; Ji, P.; Hu, Y.; Cheng, S.; et al. Highly Selective, ppb-Level Xylene Gas Detection by Sn2+-Doped NiO Flower-Like Microspheres Prepared by a One-Step Hydrothermal Method. Sensors 2019, 19, 2958. [Google Scholar] [CrossRef]
- Fang, J.; Zhu, Y.; Wu, D.; Zhang, C.; Xu, S.; Xiong, D.; Yang, P.; Wang, L.; Chu, P.K. Preparation of SnO2 Nanoparticles Doped with Palladium and Graphene and Application for Ethanol Detection. IEEE Sens. J. 2017, 17, 6240–6245. [Google Scholar] [CrossRef]
- Zhang, H.J.; Meng, F.N.; Liu, L.Z.; Chen, Y.J. Convenient route for synthesis of alpha-Fe2O3 and sensors for H2S gas. J. Alloy. Compd. 2019, 774, 1181–1188. [Google Scholar] [CrossRef]
- Borgohain, R.; Das, R.; Mondal, B.; Yordsri, V.; Thanachayanont, C.; Baruah, S. ZnO/ZnS Core-Shell Nanostructures for Low-Concentration NO2 Sensing at Room Temperature. IEEE Sens. J. 2018, 18, 7203–7208. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horizons 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Oosthuizen, D.; Motaung, D.; Swart, H. Selective detection of CO at room temperature with CuO nanoplatelets sensor for indoor air quality monitoring manifested by crystallinity. Appl. Surf. Sci. 2019, 466, 545–553. [Google Scholar] [CrossRef]
- Mandal, B.; Bhardwaj, R.; Maiti, S.; Sharma, D.S.; Das, A.K.; Mukherjee, S. Functionalized Oligo(p-Phenylenevinylene) and ZnO-Based Nanohybrid for Selective Ammonia Sensing at Room Temperature. IEEE Sens. J. 2019, 19, 2847–2854. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. 2016, 4, 157–166. [Google Scholar] [CrossRef]
- Huyen, D.N.; Tung, N.T.; Thien, N.D.; Thanh, L.H. Effect of TiO2 on the gas sensing features of TiO2/PANi nanocomposites. Sensors 2011, 11, 1924–1931. [Google Scholar] [CrossRef]
- An, K.H.; Jeong, S.Y.; Hwang, H.R.; Lee, Y.H. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube–polypyrrole nanocomposites. Adv. Mater. 2004, 16, 1005–1009. [Google Scholar] [CrossRef]
- Sakurai, Y.; Jung, H.S.; Shimanouchi, T.; Inoguchi, T.; Morita, S.; Kuboi, R.; Natsukawa, K. Novel array-type gas sensors using conducting polymers, and their performance for gas identification. Sens. Actuators Chem. 2002, 83, 270–275. [Google Scholar] [CrossRef]
- Bongiovanni Abel, S.; Olejnik, R.; Rivarola, C.R.; Slobodian, P.; Saha, P.; Acevedo, D.F.; Barbero, C.A. Resistive Sensors for Organic Vapors Based on Nanostructured and Chemically Modified Polyanilines. IEEE Sens. J. 2018, 18, 6510–6516. [Google Scholar] [CrossRef]
- Miramirkhani, F.; Navarchian, A.H. Morphology, Structure, and Gas Sensing Performance of Conductive Polymers and Polymer/Carbon Black Composites Used for Volatile Compounds Detection. IEEE Sens. J. 2017, 17, 2992–3000. [Google Scholar] [CrossRef]
- Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators Chem. 2012, 173, 1–21. [Google Scholar] [CrossRef]
- Toda, K.; Furue, R.; Hayami, S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta 2015, 878, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, D.; Sivaram, H.; Alsalme, A.; Alghamdi, A.; Jayavel, R. Freestanding flexible, pure and composite form of reduced graphene oxide paper for ammonia vapor sensing. Sci. Rep. 2019, 9, 8749. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, B.; Nammalvar, G. Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite. J. Alloy. Compd. 2019, 788, 422–428. [Google Scholar] [CrossRef]
- Wang, Z.; Sackmann, A.; Gao, S.; Weimar, U.; Lu, G.; Liu, S.; Zhang, T.; Barsan, N. Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn2SnO4 nanoparticles immobilized on reduced graphene oxide under humidity conditions. Sens. Actuators Chem. 2019, 285, 590–600. [Google Scholar] [CrossRef]
- Hu, H.; Yang, X.; Guo, X.; Khaliji, K.; Biswas, S.R.; de Abajo, F.J.G.; Low, T.; Sun, Z.; Dai, Q. Gas identification with graphene plasmons. Nat. Commun. 2019, 10, 1131. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Pitroda, J.; Jethwa, B.; Dave, S. A Critical Review on Carbon Nanotubes. Int. J. Constr. Res. Civ. Eng. 2016, 2, 36–42. [Google Scholar] [CrossRef]
- Mahar, B.; Laslau, C.; Yip, R.; Sun, Y. Development of Carbon Nanotube-Based Sensors—A Review. IEEE Sens. J. 2007, 7, 266–284. [Google Scholar] [CrossRef]
- Luo, R.; Li, Q.; Du, B.; Zhou, S.; Chen, Y. Preparation and characterization of solid electrolyte doped with carbon nanotubes and its preliminary application in NO2 gas sensors. Front. Mater. 2019, 6, 113. [Google Scholar] [CrossRef]
- Dutta, J.C.; Sharma, P.K. Fabrication, Characterization and Electrochemical Modeling of CNT Based Enzyme Field Effect Acetylcholine Biosensor. IEEE Sens. J. 2018, 18, 3090–3097. [Google Scholar] [CrossRef]
- Han, T.; Nag, A.; Mukhopadhyay, S.C.; Xu, Y. Carbon Nanotubes and its gas-sensing applications: A Review. Sens. Actuators Phys. 2019, 291, 107–143. [Google Scholar] [CrossRef]
- Nie, Q.; Zhang, W.; Wang, L.; Guo, Z.; Li, C.; Yao, J.; Li, M.; Wu, D.; Zhou, L. Sensitivity enhanced, stability improved ethanol gas sensor based on multi-wall carbon nanotubes functionalized with Pt-Pd nanoparticles. Sens. Actuators Chem. 2018, 270, 140–148. [Google Scholar] [CrossRef]
- Yang, N.; Yang, D.; Chen, L.; Liu, D.; Cai, M.; Fan, X. A Novel Interconnected Structure of Graphene-Carbon Nanotubes for the Application of Methane Adsorption. IEEE Sens. J. 2018, 18, 1555–1561. [Google Scholar] [CrossRef]
- Casanova-Cháfer, J.; Navarrete, È.; Llobet, E. Gas Sensing Properties of Carbon Nanotubes Decorated with Iridium Oxide Nanoparticles. Proceedings 2018, 2, 874. [Google Scholar] [CrossRef]
- Chen, W.; Deng, F.; Xu, M.; Wang, J.; Wei, Z.; Wang, Y. GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuators Chem. 2018, 273, 498–504. [Google Scholar] [CrossRef]
- Shu, L.; Jiang, T.; Xia, Y.; Wang, X.; Yan, D.; Wu, W. The Investigation of a SAW Oxygen Gas Sensor Operated at Room Temperature, Based on Nanostructured ZnxFeyO Films. Sensors 2019, 19, 3025. [Google Scholar] [CrossRef]
- Hotel, O.; Poli, J.; Mer-Calfati, C.; Scorsone, E.; Saada, S. SAW Sensor’s Frequency Shift Characterization for Odor Recognition and Concentration Estimation. IEEE Sens. J. 2017, 17, 7011–7018. [Google Scholar] [CrossRef]
- Li, Q.; Gu, Y.; Wang, N. Application of Random Forest Classifier by Means of a QCM-Based E-Nose in the Identification of Chinese Liquor Flavors. IEEE Sens. J. 2017, 17, 1788–1794. [Google Scholar] [CrossRef]
- Lu, D.; Zheng, Y.; Penirschke, A.; Jakoby, R. Humidity Sensors Based on Photolithographically Patterned PVA Films Deposited on SAW Resonators. IEEE Sens. J. 2016, 16, 13–14. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, H.; Li, P.; Wang, D.; Yang, Z. Humidity Sensing Properties of Metal Organic Framework-Derived Hollow Ball-Like TiO2 Coated QCM Sensor. IEEE Sens. J. 2019, 19, 2909–2915. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, D.; Wang, D.; Li, Z.; Liu, S. Quartz Crystal Microbalance Sensor for Humidity Sensing Based on Layer-by-Layer Self-Assembled PDDAC/Graphene Oxide Film. IEEE Sens. J. 2018, 18, 9471–9476. [Google Scholar] [CrossRef]
- Qi, P.; Zhao, C.; Wang, R.; Fei, T.; Zhang, T. High-Performance QCM Humidity Sensors Using Acidized-Multiwalled Carbon Nanotubes as Sensing Film. IEEE Sens. J. 2018, 18, 5278–5283. [Google Scholar] [CrossRef]
- Rossi, M.; Brunelli, D. Ultra Low Power MOX Sensor Reading for Natural Gas Wireless Monitoring. IEEE Sens. J. 2014, 14, 3433–3441. [Google Scholar] [CrossRef]
- Patil, S.; Dhodamani, A.; Vanalakar, S.; Deshmukh, S.; Delekar, S. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing. J. Phys. Chem. Solids 2018, 115, 127–136. [Google Scholar] [CrossRef]
- Somov, A.; Karelin, A.; Baranov, A.; Mironov, S. Estimation of a Gas Mixture Explosion Risk by Measuring the Oxidation Heat Within a Catalytic Sensor. IEEE Trans. Ind. Electron. 2017, 64, 9691–9698. [Google Scholar] [CrossRef]
- Karelin, A.; Baranov, A.M.; Akbari, S.; Mironov, S.; Karpova, E. Measurement Algorithm for Determining Unknown Flammable Gas Concentration Based on Temperature Sensitivity of Catalytic Sensor. IEEE Sens. J. 2019, 19, 4173–4180. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. A hand-held optoelectronic nose for the identification of liquors. ACS Sens. 2017, 3, 121–127. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, B.; Huang, Z.; Ji, H.; Li, H.; Li, X. A model-based transit-time ultrasonic gas flowrate measurement method. IEEE Trans. Instrum. Meas. 2017, 66, 879–887. [Google Scholar] [CrossRef]
- Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Namieśnik, J.; Płotka-Wasylka, J. Direct solid phase microextraction combined with gas chromatography–Mass spectrometry for the determination of biogenic amines in wine. Talanta 2018, 183, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Aliman, M.; Fedosenko, G.; Laue, A.; Reuter, R.; Derpmann, V.; Gorkhover, L.; Antoni, M. Very sensitive real-time inline process mass spectrometer based on FFT Ion Trap technique. In Proceedings of the 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 16–19 May 2016; pp. 263–266. [Google Scholar] [CrossRef]
- Degler, D.; Barz, N.; Dettinger, U.; Peisert, H.; Chassé, T.; Weimar, U.; Barsan, N. Extending the toolbox for gas sensor research: Operando UV/vis diffuse reflectance spectroscopy on SnO2-based gas sensors. Sens. Actuators Chem. 2016, 224, 256–259. [Google Scholar] [CrossRef]
- Kroutil, J.; Laposa, A.; Voves, J.; Davydova, M.; Nahlik, J.; Kulha, P.; Husak, M. Performance Evaluation of Low-Cost Flexible Gas Sensor Array With Nanocomposite Polyaniline Films. IEEE Sens. J. 2018, 18, 3759–3766. [Google Scholar] [CrossRef]
- Jamalabadi, H.; Mani-Varnosfaderani, A.; Alizadeh, N. PPy-Metal Oxide Hybrid Nanocomposite Sensor Array for Simultaneous Determination of Volatile Organic Amines in High Humid Atmosphere. IEEE Sens. J. 2017, 17, 8282–8289. [Google Scholar] [CrossRef]
- Gustafson, J.A.; Wilmer, C.E. Intelligent selection of metal-organic framework arrays for methane sensing via genetic algorithms. ACS Sens. 2019, 4, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Varnamkhasti, M.; Mohammad-Razdari, A.; Yoosefian, S.H.; Izadi, Z.; Rabiei, G. Selection of an optimized metal oxide semiconductor sensor (MOS) array for freshness characterization of strawberry in polymer packages using response surface method (RSM). Postharvest Biol. Technol. 2019, 151, 53–60. [Google Scholar] [CrossRef]
- Subandri, M.A.; Sarno, R. E-Nose Sensor Array Optimization Based on Volatile Compound Concentration Data. J. Phys. Conf. Ser. 2019, 1201, 012003. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chan, P.K. An Intelligent ISFET Sensory System With Temperature and Drift Compensation for Long-Term Monitoring. IEEE Sens. J. 2008, 8, 1948–1959. [Google Scholar] [CrossRef]
- Wenzel, M.J.; Mensah-Brown, A.; Josse, F.; Yaz, E.E. Online Drift Compensation for Chemical Sensors Using Estimation Theory. IEEE Sens. J. 2011, 11, 225–232. [Google Scholar] [CrossRef]
- Marco, S.; Gutierrez-Galvez, A. Signal and Data Processing for Machine Olfaction and Chemical Sensing: A Review. IEEE Sens. J. 2012, 12, 3189–3214. [Google Scholar] [CrossRef]
- Padilla, M.; Perera, A.; Montoliu, I.; Chaudry, A.; Persaud, K.; Marco, S. Drift compensation of gas sensor array data by Orthogonal Signal Correction. Chemom. Intell. Lab. Syst. 2010, 100, 28–35. [Google Scholar] [CrossRef]
- Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sens. Actuators Chem. 2010, 146, 460–465. [Google Scholar] [CrossRef] [Green Version]
- De Vito, S.; Fattoruso, G.; Pardo, M.; Tortorella, F.; Di Francia, G. Semi-Supervised Learning Techniques in Artificial Olfaction: A Novel Approach to Classification Problems and Drift Counteraction. IEEE Sens. J. 2012, 12, 3215–3224. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Ye, M.; Ge, S.S.; Du, X. Drift Compensation for Electronic Nose by Semi-Supervised Domain Adaption. IEEE Sens. J. 2014, 14, 657–665. [Google Scholar] [CrossRef]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2010, 22, 199–210. [Google Scholar] [CrossRef]
- Yan, K.; Kou, L.; Zhang, D. Learning Domain-Invariant Subspace Using Domain Features and Independence Maximization. IEEE Trans. Cybern. 2018, 48, 288–299. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans. Evol. Comput. 2016, 20, 606–626. [Google Scholar] [CrossRef]
- Rehman, A.; Bermak, A. Heuristic Random Forests (HRF) for Drift Compensation in Electronic Nose Applications. IEEE Sens. J. 2019, 19, 1443–1453. [Google Scholar] [CrossRef]
- Yan, J.; Guo, X.; Duan, S.; Jia, P.; Wang, L.; Peng, C.; Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 2015, 15, 27804–27831. [Google Scholar] [CrossRef]
- Faleh, R.; Othman, M.; Gomri, S.; Aguir, K.; Kachouri, A. A Transient Signal Extraction Method of WO3 Gas Sensors Array to Identify Polluant Gases. IEEE Sens. J. 2016, 16, 3123–3130. [Google Scholar] [CrossRef]
- Thammarat, P.; Kulsing, C.; Wongravee, K.; Leepipatpiboon, N.; Nhujak, T. Identification of Volatile Compounds and Selection of Discriminant Markers for Elephant Dung Coffee Using Static Headspace Gas Chromatography—Mass Spectrometry and Chemometrics. Molecules 2018, 23, 1910. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.G.; Collier-Oxandale, A.; Hannigan, M. Performance of artificial neural networks and linear models to quantify 4 trace gas species in an oil and gas production region with low-cost sensors. Sens. Actuators Chem. 2019, 283, 504–514. [Google Scholar] [CrossRef]
- Tonezzer, M.; Dang, L.T.; Tran, H.Q.; Iannotta, S. Multiselective visual gas sensor using nickel oxide nanowires as chemiresistor. Sens. Actuators Chem. 2018, 255, 2785–2793. [Google Scholar] [CrossRef]
- Yan, M.; Tylczak, J.; Yu, Y.; Panagakos, G.; Ohodnicki, P. Multi-component optical sensing of high temperature gas streams using functional oxide integrated silica based optical fiber sensors. Sens. Actuators Chem. 2018, 255, 357–365. [Google Scholar] [CrossRef]
- Konstantynovski, K.; Njio, G.; Börner, F.; Lepcha, A.; Fischer, T.; Holl, G.; Mathur, S. Bulk detection of explosives and development of customized metal oxide semiconductor gas sensors for the identification of energetic materials. Sens. Actuators Chem. 2018, 258, 1252–1266. [Google Scholar] [CrossRef]
- Faleh, R.; Othman, M.; Kachouri, A.; Aguir, K. Recognition of O3 concentration using WO3 gas sensor and principal component analysis. In Proceedings of the 1st International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Sousse, Tunisia, 17–19 March 2014; pp. 322–327. [Google Scholar]
- Wang, Q.; Li, L.; Ding, W.; Zhang, D.; Wang, J.; Reed, K.; Zhang, B. Adulterant identification in mutton by electronic nose and gas chromatography-mass spectrometer. Food Control 2019, 98, 431–438. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, J.; Zhang, L.; Huang, C.; Chen, L.; Wang, G.; Liu, X.; Lu, C. Elements characterization of Chinese tea with different fermentation degrees and its use for geographical origins by liner discriminant analysis. J. Food Compos. Anal. 2019, 82, 103246. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Jia, B. The Technique of Extracting and Detecting Athletes’ Oral Odors Based on the Analysis of Biological Characteristics. Chem. Eng. Trans. 2018, 68, 403–408. [Google Scholar]
- Cardellicchio, A.; Lombardi, A.; Guaragnella, C. Iterative complex network approach for chemical gas sensor array characterisation. J. Eng. 2019, 2019, 4612–4616. [Google Scholar] [CrossRef]
- Peterson, L. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Deng, C.; Lv, K.; Shi, D.; Yang, B.; Yu, S.; He, Z.; Yan, J. Enhancing the discrimination ability of a gas sensor array based on a novel feature selection and fusion framework. Sensors 2018, 18, 1909. [Google Scholar] [CrossRef] [PubMed]
- Mawardzi, M.; Japper-Jaafar, A.; Najib, M.; Daud, S.; Ya, T. Classification of waxy crude oil odor-profile using gas sensor array. IOP Conf. Ser. Mater. Sci. Eng. 2019, 469, 012073. [Google Scholar] [CrossRef]
- Ali, A.A.S.; Akbar, M.A.; Amira, A.; Bensaali, F.; Benammar, M.; Hassan, M.; Bermak, A. Fast Prototyping of KNN Based Gas Discrimination System on the Zynq SoC. Qatar Found. Annu. Res. Conf. Proc. 2016, 2016, ICTOP1832. [Google Scholar]
- Gutierrez-Osuna, R.; Nagle, H.T. A method for evaluating data-preprocessing techniques for odour classification with an array of gas sensors. IEEE Trans. Syst. Man Cybern. Part (Cybernetics) 1999, 29, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Brahim-Belhaouari, S.; Hassan, M.; Walter, N.; Bermak, A. Advanced statistical metrics for gas identification system with quantification feedback. IEEE Sens. J. 2015, 15, 1705–1715. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Z.; Chen, Y. Fault detection using the clustering-kNN rule for gas sensor arrays. Sensors 2016, 16, 2069. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, H.; Liu, J.; You, J.; Leung, H.; Han, G. Hybrid k-nearest neighbor classifier. IEEE Trans. Cybern. 2016, 46, 1263–1275. [Google Scholar] [CrossRef]
- Scholkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Hsu, C.W.; Lin, C.J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425. [Google Scholar]
- Wang, K.; Ye, W.; Zhao, X.; Pan, X. A support vector machine-based genetic algorithmmethod for gas classification. In Proceedings of the 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China, 14–16 April 2017; pp. 363–366. [Google Scholar]
- Jia, Y.; Yu, B.; Du, M.; Wang, X. Gas Composition Recognition Based on Analyzing Acoustic Relaxation Absorption Spectra: Wavelet Decomposition and Support Vector Machine Classifier. In Proceedings of the 2nd International Conference on Electrical Engineering and Automation (ICEEA 2018), Chengdu, China, 25–26 March 2018. [Google Scholar] [CrossRef]
- Sujono, H.A.; Rivai, M.; Amin, M. Asthma identification using gas sensors and support vector machine. Telecommun. Comput. Electron. Control 2018, 16, 1468–1480. [Google Scholar] [CrossRef]
- Zhang, J.; Tittel, F.K.; Gong, L.; Lewicki, R.; Griffin, R.J.; Jiang, W.; Jiang, B.; Li, M. Support vector machine modeling using particle swarm optimization approach for the retrieval of atmospheric ammonia concentrations. Environ. Model. Assess. 2016, 21, 531–546. [Google Scholar] [CrossRef]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators Chem. 2012, 166, 320–329. [Google Scholar] [CrossRef]
- Laref, R.; Losson, E.; Sava, A.; Siadat, M. Support Vector Machine Regression for Calibration Transfer between Electronic Noses Dedicated to Air Pollution Monitoring. Sensors 2018, 18, 3716. [Google Scholar] [CrossRef] [PubMed]
- Medsker, L.R. Hybrid Intelligent Systems; Springer Science & Business Media: Cham, Switzerland, 2012. [Google Scholar]
- McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- GGCS, K. Learning representations by back-propagating errors. Nature 1986, 323. [Google Scholar]
- Kennedy, R.F.; Nahavandi, S. A Low-Cost Intelligent Gas Sensing Device for Military Applications. In Proceedings of the Congress on Image and Signal Processing, Sanya, China, 27–30 May 2008; pp. 3–8. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Wang, P.; Wang, Q. A high precise E-nose for daily indoor air quality monitoring in living environment. Integration 2017, 58, 286–294. [Google Scholar] [CrossRef]
- Huang, G.B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74, 155–163. [Google Scholar] [CrossRef]
- Zhao, L.; Li, X.; Wang, J.; Yao, P.; Akbar, S.A. Detection of Formaldehyde in Mixed VOCs Gases Using Sensor Array With Neural Networks. IEEE Sens. J. 2016, 16, 6081–6086. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Zhang, Z.; Gao, W. Prediction of gas composition obtained from steam-gasification of residual oil using an Artificial Neural Network (ANN) model. Pet. Sci. Technol. 2019, 37, 641–644. [Google Scholar] [CrossRef]
- Ye, J. Artificial neural network modeling of methanol production from syngas. Pet. Sci. Technol. 2019, 37, 629–632. [Google Scholar] [CrossRef]
- Gao, W.; Aslam, A.; Li, F. Effect of equivalence ratio on gas distribution and performance parameters in air-gasification of asphaltene: A model based on Artificial Neural Network (ANN). Pet. Sci. Technol. 2019, 37, 202–207. [Google Scholar] [CrossRef]
- Szulczyński, B.; Armiński, K.; Namieśnik, J.; Gębicki, J. Determination of odour interactions in gaseous mixtures using electronic nose methods with artificial neural networks. Sensors 2018, 18, 519. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, M.; Cabellos, J.M.; Arroyo, T.; Horrillo, M. Quantification of Wine Mixtures with an electronic nose and a human Panel. Front. Bioeng. Biotechnol. 2018, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Meng, Q.; Jing, Y.; Liu, Y.; Zeng, M. A Bio-Inspired Breathing Sampling Electronic Nose for Rapid Detection of Chinese Liquors. IEEE Sens. J. 2017, 17, 4689–4698. [Google Scholar] [CrossRef]
- Shen, S.; Fan, Z.; Deng, J.; Guo, X.; Zhang, L.; Liu, G.; Tan, Q.; Xiong, J. An LC Passive Wireless Gas Sensor Based on PANI/CNT Composite. Sensors 2018, 18, 3022. [Google Scholar] [CrossRef] [PubMed]
- Hinnemo, M.; Makaraviciute, A.; Ahlberg, P.; Olsson, J.; Zhang, Z.; Zhang, S.; Zhang, Z. Protein Sensing Beyond the Debye Length Using Graphene Field-Effect Transistors. IEEE Sens. J. 2018, 18, 6497–6503. [Google Scholar] [CrossRef]
- Chen, B.; Liu, C.; Xie, Y.; Jia, P.; Hayashi, K. Localized Surface Plasmon Resonance Gas Sensor Based on Molecularly Imprinted Polymer Coated Au Nano-Island Films: Influence of Nanostructure on Sensing Characteristics. IEEE Sens. J. 2016, 16, 3532–3540. [Google Scholar] [CrossRef]
- Luna, S.; Stahovich, T.F.; Su, H.C.; Myung, N.V. A Method for Optimizing the Design of Heterogeneous Nano Gas Chemiresistor Arrays. Electroanalysis 2019, 31, 1009–1018. [Google Scholar] [CrossRef]
- Xing, Y.; Vincent, T.A.; Cole, M.; Gardner, J.W. Real-Time Thermal Modulation of High Bandwidth MOX Gas Sensors for Mobile Robot Applications. Sensors 2019, 19, 1180. [Google Scholar] [CrossRef]
- Ait Si Ali, A.; Farhat, A.; Mohamad, S.; Amira, A.; Bensaali, F.; Benammar, M.; Bermak, A. Embedded Platform for Gas Applications Using Hardware/Software Co-Design and RFID. IEEE Sens. J. 2018, 18, 4633–4642. [Google Scholar] [CrossRef]
- Fonollosa, J.; Rodríguez-Luján, I.; Trincavelli, M.; Vergara, A.; Huerta, R. Chemical discrimination in turbulent gas mixtures with mox sensors validated by gas chromatography-mass spectrometry. Sensors 2014, 14, 19336–19353. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zeng, M.; Meng, Q.H. Electronic nose using a bio-inspired neural network modeled on mammalian olfactory system for Chinese liquor classification. Rev. Sci. Instrum. 2019, 90, 025001. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Mu, X.; Yang, Y.; Mason, A.J. Low Power Multimode Electrochemical Gas Sensor Array System for Wearable Health and Safety Monitoring. IEEE Sens. J. 2014, 14, 3391–3399. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, H.; Shen, W.; Jian, J. Wearable electronic nose for human skin odor identification: A preliminary study. Sens. Actuators Phys. 2019, 285, 395–405. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Chen, D.; Jin, L.; Li, Y.; Zhang, Y.; Xu, L.; Guo, Y.; Lin, F.; Wu, F. Gas Detection Microsystem With MEMS Gas Sensor and Integrated Circuit. IEEE Sens. J. 2018, 18, 6765–6773. [Google Scholar] [CrossRef]
- Chen, M.; Peng, S.; Wang, N.; Xu, L.; Lin, F.; Wu, F. A Wide-Range and High-Resolution Detection Circuit for MEMS Gas Sensor. IEEE Sens. J. 2019, 19, 3130–3137. [Google Scholar] [CrossRef]
- Sensirion Gas Sensors SVM30 Datasheet. Available online: https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/0_Datasheets/Gas/Sensirion_Gas_Sensors_SVM30_Datasheet.pdf (accessed on 30 August 2019).
- Mitrovics, J. Smart sensors for air quality monitoring: Concepts and new developments. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–2. [Google Scholar] [CrossRef]
- MacNaughton, S.I.; Sonkusale, S. Gas Analysis System on Chip With Integrated Diverse Nanomaterial Sensor Array. IEEE Sens. J. 2015, 15, 3500–3506. [Google Scholar] [CrossRef]
- Seok, C.; Mahmud, M.M.; Kumar, M.; Adelegan, O.J.; Yamaner, F.Y.; Oralkan, O. A Low-Power Wireless Multichannel Gas Sensing System Based on a Capacitive Micromachined Ultrasonic Transducer (CMUT) Array. IEEE Internet Things J. 2019, 6, 831–843. [Google Scholar] [CrossRef]
- Spirjakin, D.; Baranov, A.; Akbari, S. Wearable Wireless Sensor System With RF Remote Activation for Gas Monitoring Applications. IEEE Sens. J. 2018, 18, 2976–2982. [Google Scholar] [CrossRef]
- Adib, M.; Eckstein, R.; Hernandez-Sosa, G.; Sommer, M.; Lemmer, U. SnO2 Nanowire-Based Aerosol Jet Printed Electronic Nose as Fire Detector. IEEE Sens. J. 2018, 18, 494–500. [Google Scholar] [CrossRef]
- Nakamura, E.F.; Loureiro, A.A.; Frery, A.C. Information fusion for wireless sensor networks: Methods, models, and classifications. ACM Comput. Surv. (CSUR) 2007, 39, 9. [Google Scholar] [CrossRef]
- Qiu, T.; Liu, J.; Si, W.; Wu, D.O. Robustness Optimization Scheme With Multi-Population Co-Evolution for Scale-Free Wireless Sensor Networks. IEEE/ACM Trans. Netw. 2019, 27, 1028–1042. [Google Scholar] [CrossRef]
- Mahfouz, S.; Mourad-Chehade, F.; Honeine, P.; Farah, J.; Snoussi, H. Gas Source Parameter Estimation Using Machine Learning in WSNs. IEEE Sens. J. 2016, 16, 5795–5804. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.; Li, B.; Qu, W.; Ahmed, E.; Wang, X. TOSG: A Topology Optimization Scheme With Global Small World for Industrial Heterogeneous Internet of Things. IEEE Trans. Ind. Inform. 2019, 15, 3174–3184. [Google Scholar] [CrossRef]
- Kasabov, N. Evolving and Spiking Connectionist Systems for Brain-Inspired Artificial Intelligence. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 111–138. [Google Scholar]
Materials | Measure Range | Sensitivity | Response/Recovery Time | Temperature | Mass/Thickness of Coated Film |
---|---|---|---|---|---|
SAW with PVA Film | 16–72.8%RH | 89.34 kHz/%RH | -/- | 20 °C | -/910 nm |
Patterned on the Reflectors [59] | |||||
SAW with PVA Film | 15–59.1%RH | 23.09 kHz/%RH | -/- | 20 °C | -/865 nm |
Opened at IDT Pads [59] | |||||
Nanoflower TiO-shaped QCM [60] | 0–97%RH | 15.3 Hz/%RH | 9 s/3 s (At 97%RH) | 20 °C | 11827 ng/1–4 μm |
Nanosphere TiO2-shaped QCM [60] | 0–97%RH | 18.9 Hz/%RH | 6 s/3 s (At 97%RH) | 20 °C | 11801 ng/1–3 μm |
Hollow Ball-like TiO2-coated QCM [60] | 0–97%RH | 33.8 Hz/%RH | 5 s/2 s (At 97%RH) | 20 °C | 11676 ng/300 nm |
PDDAC /GO, Film-based QCM [61] | 0–97%RH | 25.4 Hz/%RH | 7 s/3 s (At 97%RH) | 25 °C | 5518 ng/- |
Acidized-MWCNTs -coated QCM [62] | 11–95%RH | 221.4 HZ/%RH | 49 s/6 s (At 95%RH) | 25 °C | 21114 ng/- |
Material | Advantages | Limiting Factors | Application |
---|---|---|---|
(1) Small size | (1) Poor specificity and selectivity | ||
(2) Low cost | (2) High operating temperature | ||
Oxide Semiconductor | (3) Short response time | (3) Affected by humidity and poisoning | Almost all areas |
[26,27,28,29,30,31,32,33] | (4) Long-lasting life | (4) Nonlinearity at high temperature | |
(5) Simple circuit | (5) High energy consumption | ||
(1) Strong sensitivity | (1) Long response and recovery time | (1) Biological sensor | |
Conductive Polymer | (2) General operating temperature | (2) Low selectivity | (2) Disease detection |
Composites | (3) Strong biomolecular interactions | (3) High cost | (3) Food quality testing |
[34,35,36,37,38,39] | (4) Various preparation processes | (4) Easy affected by humidity | (4) Plating material |
(1) High sensitivity | (1) High cost | (1) Environmental monitoring | |
(2) Strong adsorption capacity | (2) Complicated production | (2) Disease detection | |
Carbon Nano-materials | (3) Sturdy and lightweight | (3) Non-uniform standard | (3) Military field |
[40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] | (4) Stable and suitable for mixing | (4) Complex mechanism | |
other materials | |||
(5) Quick adsorption capacity | |||
(1) High sensitivity and short response time | (1) Affected by temperature and humidity | (1) Electronic nose | |
Acoustic Wave Sensor | (2) Low power consumption | (2) Complex coating process | (2) Environmental monitoring |
[30,55,56,57,58,59,60,61,62] | (3) Suitable for almost all gases | (3) Poor signal-to-noise performance | (3) Food quality testing |
(4) Long-term stability | |||
(1) Low cost | (1) Catalyst poisoning | (1) Combustible gas detection | |
Catalytic Sensor | (2) Low sensitivity to humidity | (2) Low sensitivity | (2) Drunk driving detection |
[63,64,65,66] | (3) Good reproducibility | (3) Low selectivity |
Formaldehyde (ppm) | Ethanol (ppm) | Acetone (ppm) | Touene (ppm) | BP | ELM | SVM |
---|---|---|---|---|---|---|
100 | 0 | 0 | 0 | W | W | C |
0 | 150 | 0 | 0 | W | C | C |
0 | 0 | 200 | 0 | C | C | C |
0 | 0 | 0 | 10 | C | C | C |
10 | 50 | 0 | 0 | C | C | C |
10 | 0 | 200 | 0 | C | C | C |
10 | 0 | 0 | 50 | C | C | C |
50 | 100 | 0 | 0 | C | C | C |
50 | 0 | 10 | 0 | C | C | C |
50 | 0 | 0 | 150 | C | C | C |
100 | 150 | 0 | 0 | C | C | C |
100 | 0 | 50 | 0 | W | C | C |
100 | 0 | 0 | 200 | C | C | C |
10 | 50 | 50 | 50 | C | C | C |
50 | 100 | 50 | 50 | C | C | C |
50 | 50 | 10 | 50 | C | C | C |
100 | 50 | 50 | 50 | C | C | C |
Accuracy (%) | 82 | 94 | 100 | |||
Train Time (s) | 17.80 | 0.04 | 0.95 |
Key Point | Advantage | Disadvantage | Filed | |
---|---|---|---|---|
(1) Comprehensible | (1) Sensitive for sample distribution | Increasing the selectivity to gases | ||
(2) Insensitive to noise | (2) Slow speed for recognition | Identifying similar gases | ||
KNN | k value | (3) Low cost for retraining | (3) High spatial complexity | |
[101,102,103,104,105,106,107] | The types of mixed gases data | (4) Good combination with other algorithms | (4) Heavy calculation burden | |
(5) Poor interpretability | ||||
(1) Strong theoretical basis | (1) Sensitive of noise | Improving the accuracy of sensor | ||
(2) Processing the small sample | (2) Tough choice for kernel function | Small gases sample data | ||
SVM | Kernel function | (3) Good generalization ability | (3) Long learning time | Calibrating sensors |
[110,111,112,113,114,115] | The amount of mixed gases data | (4) Resolve non-line questions | (4) Poor application in large samples | |
(5) Solving the optimal solution | ||||
Weight | (1) Good learning ability | (1) A plenty of parameters requirement | Handling nonlinear relationships | |
ANN | Activation function | (2) Good parallel processing capability | (2) Poor interpretability for output | Predicting gas interaction |
[91,119,120,121,122,123,124,125,126] | No. of hidden layers | (3) Strong compatible for error | (3) Too long learning time | Calibrating sensors |
(4) Resolve complex non-line questions | (4) Easy to overfit |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. https://doi.org/10.3390/s19173760
Feng S, Farha F, Li Q, Wan Y, Xu Y, Zhang T, Ning H. Review on Smart Gas Sensing Technology. Sensors. 2019; 19(17):3760. https://doi.org/10.3390/s19173760
Chicago/Turabian StyleFeng, Shaobin, Fadi Farha, Qingjuan Li, Yueliang Wan, Yang Xu, Tao Zhang, and Huansheng Ning. 2019. "Review on Smart Gas Sensing Technology" Sensors 19, no. 17: 3760. https://doi.org/10.3390/s19173760
APA StyleFeng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T., & Ning, H. (2019). Review on Smart Gas Sensing Technology. Sensors, 19(17), 3760. https://doi.org/10.3390/s19173760