Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Electrode Fabrication
2.3. Potentiometric and Chronopotentiometric Measurements
2.4. Sandwich Membrane Experiments
2.5. Nitrate Assessment in Wastewater, Fertilizers and Gun Powders
3. Results and Discussion
3.1. Potentiometric Characteristics
3.2. Selectivity
3.3. Chronopotentiometry
3.4. Binding Constants of the Charged Ionophore
3.5. Analytical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hassan, S.S.M.; Sayour, H.E.M.; Al-Mehrezi, S.S. A novel planar miniaturized potentiometric sensor for flow injection analysis of nitrates in wastewaters, fertilizers and pharmaceuticals. Anal. Chim. Acta 2007, 581, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Piek, M.; Piech, R.; Paczosa-Bator, B. Improved Nitrate Sensing Using Solid Contact Ion Selective Electrodes Based on TTF and Its Radical Salt. J. Electrochem. Soc. 2015, 162, B257–B263. [Google Scholar] [CrossRef]
- WHO. (WHO/SDE/WSH/07.01/16); Background document for preparation of WHO Guidelines for drinking-water quality; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- American Water Works Association and McGraw-Hill. Water Quality and Treatment—A Handbook of Community Water Supplies, 5th ed.; American Water Works Association and McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Bhatnagar, A.; Sillanpaa, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Fischer, C.J. A simplified resorcinol method for direct spectrophotometric determination of nitrate in seawater. Mar. Chem. 2006, 99, 220–226. [Google Scholar] [CrossRef]
- Abbas, M.N.; Mostafa, G.A. Determination of traces of nitrite and nitrate in water by solid phase spectrophotometry. Anal. Chim. Acta 2000, 410, 185–192. [Google Scholar] [CrossRef]
- Li, Y.; Whitaker, J.S.; McCarty, C.L. Reversed-phase liquid chromatography/electrospray ionization/mass spectrometry with isotope dilution for the analysis of nitrate and nitrite in water. J. Chromatogr. A 2011, 1218, 476–483. [Google Scholar] [CrossRef]
- Butt, S.B.; Riaz, M.; Zafar Iqbal, M. Simultaneous determination of nitrite and nitrate by normal phase ion-pair liquid chromatography. Talanta 2001, 55, 789–797. [Google Scholar] [CrossRef]
- Oztekin, N.; Nutku, M.S.; Erim, F.B. Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food Chem. 2002, 76, 103–106. [Google Scholar] [CrossRef]
- Bertotti, M.; Pletcher, D. Amperometric determination of nitrite via reaction with iodide using microelectrodes. Anal. Chim. Acta 1997, 337, 49–55. [Google Scholar] [CrossRef]
- Ximenes, M.I.N.; Rath, S.; Reyes, F.G.R. Polarographic determination of nitrate in vegetables. Talanta 2000, 51, 49–56. [Google Scholar] [CrossRef]
- Afkhami, A.; Madrakian, T.; Ghaedi, H.; Khanmohammadi, H. Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite. Electrochim. Acta 2012, 66, 255–264. [Google Scholar] [CrossRef]
- Hassan, S.S.M. The microgasometric determination of some inorganic and organic nitrates by reduction with iodide ion and elemental iodine. Analyst 1971, 96, 59–61. [Google Scholar] [CrossRef]
- Hassan, S.S.M. Microgasometric determination of nitrate by reduction with sulphamic acid. Anal. Chim. Acta 1971, 53, 449–451. [Google Scholar] [CrossRef]
- Biswas, S.; Chowdhuzy, B.; Ray, B.C. A novel spectrofluorimetric method for the ultra trace analysis of nitrite and nitrate in aqueous medium and its application to air, water, soil and forensic samples. Talanta 2004, 64, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.Q.; Li, D.H.; Zhang, H.; Xu, J.G. A sensitive fluorimetric method for the determination of nitrite and nitrate in seawater by a novel red-region fluorescence dye. Anal. Lett. 2001, 34, 2761–2770. [Google Scholar] [CrossRef]
- Hassan, S.S.M. Organic Analysis Using Atomic Absorption Spectrometry; Ellis Horwood: Chichester, England, 1984. [Google Scholar]
- Hassan, S.S.M. New atomic-absorption spectrometric, potentiometric and polarographic methods for the determination of nitrates. Talanta 1981, 28, 89–93. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Abdel-Shafi, A.A.; Mohammed, A.H.K. Flow injection fluorimetric determination of chromium (VI) in electroplating baths by luminescence quenching of tris(2,2’bipyridyl) ruthenium(II). Talanta 2005, 67, 696–702. [Google Scholar] [CrossRef]
- El-Naby, E.H.; Kamel, A.H. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug. Mat. Sci. Eng. C 2015, 54, 217–224. [Google Scholar] [CrossRef]
- Kamel, A.H.; Galal, H.R.; Awaad, N.S. Cost-effective and handmade paper-based potentiometric sensing platform for piperidine determination. Anal. Methods 2018, 10, 5406–5415. [Google Scholar] [CrossRef]
- Crespo, G.A. Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis. Electrochim. Acta 2017, 245, 1023–1034. [Google Scholar] [CrossRef]
- Cuartero, M.; Crespo, G.A. All-solid-state potentiometric sensors: A new wave for in situ aquatic research. Curr. Opin. Electrochem. 2018, 10, 98–106. [Google Scholar] [CrossRef]
- Parrilla, M.; Cuartero, M.; Crespo, G.A. Wearable potentiometric ion sensors. Trends Anal. Chem. 2019, 110, 303–320. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Elnemma, E.M.; Mohamed, A.H.K. Novel Biomedical Sensors for Flow Injection Potentiometric Determination of Creatinine in Human Serum. Electroanalysis 2005, 17, 2246–2253. [Google Scholar] [CrossRef]
- Rubinova, N.; Chumbimuni-Torres, K.Y.; Bakker, E. Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level. Sens. Actuators B 2007, 121, 135–141. [Google Scholar] [CrossRef]
- Lindner, E.; Gyurcsányi, R.J. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. Solid State Electrochem. 2009, 13, 51–68. [Google Scholar] [CrossRef]
- Sutter, J.; Radu, A.; Peper, S.; Bakker, E.; Pretsch, E. Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range. Anal. Chim. Acta 2004, 523, 53–59. [Google Scholar] [CrossRef]
- Cattrall, R.; Freiser, H. Coated wire ion-selective electrodes. Anal. Chem. 1971, 43, 1905–1906. [Google Scholar] [CrossRef]
- Yin, T.; Qin, W. Applications of nanomaterials in potentiometric sensors. TrAC Trend Anal. Chem. 2013, 51, 79–86. [Google Scholar] [CrossRef]
- Hu, J.; Stein, A.; Bühlmann, P. Rational design of all-solid-state ion-selective electrodes and reference electrodes. Trends Anal. Chem. 2016, 76, 102–114. [Google Scholar] [CrossRef]
- Mi, Y.; Bakker, E. Determination of complex formation constants of lipophilic neutral ionophores in solvent polymericmembranes with segmented sandwich membranes. Anal. Chem. 1999, 71, 5279–5287. [Google Scholar] [CrossRef]
- Qin, Y.; Mi, Y.; Bakker, E. Determination of complex formation constants of 18 neutral ionophores in PVC–DOS and PVC–NPOE membranes. Anal. Chim. Acta 2000, 421, 207–220. [Google Scholar] [CrossRef]
- Ebdon, L.; Braven, J. Nitrate-selective electrodes containing immobilized ion exchangers within a rubbery membrane with controlled cross-link density. Analyst 1991, 116, 1005–1010. [Google Scholar] [CrossRef]
- Bakker, E. Determination of improved selectivity coefficients of polymer membrane ion-selective electrodes by conditioning with a discriminated ion. J. Electrochem. Soc. 1996, 143, L83–L85. [Google Scholar] [CrossRef]
- Bobacka, J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Anthis, A.H.C.; Ghahraman Afshar, M.; Pankratova, N.; Cuartero, M.; Crespo, G.A.; Bakker, E. All-solid-state potentiometric sensors with multi-walled carbon nanotube inner transducing layer for anion detection in environmental samples. Anal. Chem. 2015, 87, 8640–8645. [Google Scholar] [CrossRef] [PubMed]
- Crespo, G.A.; Riu, J.; Ruiz, A.; Rius, F.X. Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. Analyst 2009, 134, 1905–1910. [Google Scholar]
- Crespo, G.A.; Macho, S.; Bobacka, J.; Rius, F.X. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes. Anal. Chem. 2009, 81, 676–681. [Google Scholar] [CrossRef]
- Crespo, G.A.; Gugsa, D.; Macho, S.; Rius, F.X. Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal. Bioanal. Chem. 2009, 395, 2371–2376. [Google Scholar] [CrossRef]
- DIONEX. Determination of Nitrite and Nitrate in Drinking Water Using Ion Chromatography with Direct UV Detection. 1991. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/4189- AU132 _Apr91_ LPN034527.pdf (accessed on 8 September 2019).
Parameter | GC/MWCNTs/NO3−-ISE | GC/NO3−-ISE |
---|---|---|
Slope, (mV/decade) * | −55.1 ± 2.1 | −53.1 ± 1.4 |
Correlation coefficient, (r2) | 0.9973 | 0.9995 |
Linear range, (M) | 8.0 × 10−8–1.0 × 10−2 | 1.0 × 10−7–1.0 × 10−2 |
Detection limit, (M) | 2.8 × 10−8 | 4.7 × 10−8 |
Working range, pH | 3.5–10 | 3.5–10 |
Response time, (s) | <10 | <10 |
Life span, (weeks) | 8 | 8 |
Standard deviation, (mV) | 1.3 | 1.7 |
Accuracy, (%) | 99.3 | 98.7 |
Precision, CVw, (%) | 1.1 | 0.9 |
Interferent, B | log KPotNO3,B | |
---|---|---|
GC/MWCNTs/NO3−-ISE | GC /NO3−-ISE | |
Cl− | −5.10 ± 0.4 | −5.08 ± 0.2 |
SO42− | −6.50 ± 0.7 | −6.60 ± 0.3 |
S2− | −4.70 ± 0.3 | −4.64 ± 0.4 |
F− | −6.80 ± 0.9 | −6.92 ± 0.1 |
CH3COO− | −3.30 ± 0.3 | −3.22 ± 0.6 |
PO43− | −7.10 ± 0.2 | −7.01 ± 0.2 |
NO2− | −4.10 ± 0.3 | −4.07 ± 0.6 |
Sample Source | Nitrate-N * (mg/L) | Difference | |
---|---|---|---|
Proposed Potentiometric Method | Ion Chromatography Method [42] | ||
Nitrate fertilizer factory, outfall (I) | 38.6 ± 0.3 | 39.9 ± 0.8 | 1.3 |
Nitrate fertilizer factory, outfall (II) | 40.3 ± 0.4 | 42.6 ± 0.3 | 2.3 |
Raw sewage plant inflow | 110.3 ± 0.9 | 115.4 ± 0.7 | 5.1 |
Aerated lagoon effluent | 23.2 ± 0.9 | 25.6 ± 0.3 | 2.4 |
Sample Source | Labeled (NO3-N) | Nitrate-N *, Recovery% | Difference | |
---|---|---|---|---|
Proposed Potentiometric Method | Ion Chromatography Method [42] | |||
Ammonium nitrate fertilizer (Alex Fert. Co.) | 16.5–17.5% (w/w) | 98.3 ± 0.2 | 97.5 ± 0.6 | 0.8 |
Ammonium nitrate fertilizer (El Naser Fert. Co.) | 16.5–17.5% (w/w) | 98.5 ± 0.6 | 97.8 ± 0.3 | 0.7 |
Gun powder 1 | - | 99.7 ± 0.3 | 99.5 ± 0.4 | 0.2 |
Gun powder 2 | - | 99.2 ± 0.5 | 99.6 ± 0.6 | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
S. M. Hassan, S.; Galal Eldin, A.; E. Amr, A.E.-G.; A. Al-Omar, M.; H. Kamel, A.; Khalifa, N.M. Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer. Sensors 2019, 19, 3891. https://doi.org/10.3390/s19183891
S. M. Hassan S, Galal Eldin A, E. Amr AE-G, A. Al-Omar M, H. Kamel A, Khalifa NM. Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer. Sensors. 2019; 19(18):3891. https://doi.org/10.3390/s19183891
Chicago/Turabian StyleS. M. Hassan, Saad, Ahmed Galal Eldin, Abd El-Galil E. Amr, Mohamed A. Al-Omar, Ayman H. Kamel, and Nagy M. Khalifa. 2019. "Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer" Sensors 19, no. 18: 3891. https://doi.org/10.3390/s19183891
APA StyleS. M. Hassan, S., Galal Eldin, A., E. Amr, A. E. -G., A. Al-Omar, M., H. Kamel, A., & Khalifa, N. M. (2019). Improved Solid-Contact Nitrate Ion Selective Electrodes Based on Multi-Walled Carbon Nanotubes (MWCNTs) as an Ion-to-Electron Transducer. Sensors, 19(18), 3891. https://doi.org/10.3390/s19183891