Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California
Abstract
:1. Introduction
2. Methods
2.1. The GACOS Products
2.2. InSAR Atmospheric Correction Based on GACOS Products
2.3. The GACOS-Based SBAS-InSAR Method
3. Dataset and Processing
3.1. Data Sources
3.2. Data Processing
4. Results and Discussion
4.1. Comparison of the Deformation Rate Maps
4.2. Assessing the GACOS Products Using GPS Data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Simons, M.; Rosen, P.A. Interferometric Synthetic Aperture Radar Geodesy. In Treatise on Geophysic-Geodesy; Elsevier: Amsterdam, The Nethelands, 2007; Volume 3, pp. 391–446. ISBN 9780123868749. [Google Scholar]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Rosen, P.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Liu, G.X.; Ding, X.L.; Li, Z.L.; Li, Z.W.; Chen, Y.Q.; Yu, S.B. Pre- and co-seismic ground deformations of the 1999 Chi-Chi, Taiwan earthquake, measured with SAR interferometry. Comput. Geosci. 2004, 30, 333–343. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Int. Geosci. Remote Sens. Symp. 1994, 1, 286–288. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Gens, R.; van Genderen, J.L. Review Article SAR Interferometry—Issues, Techniques, Applications. Int. J. Remote Sens. 1996, 17, 1803–1835. [Google Scholar] [CrossRef]
- Burgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Onn, F.; Zebker, H.A. Correction for interferometric synthetic aperture radar atmospheric phase artifacts using time series of zenith wet delay observations from a GPS network. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Hooper, A.; Wright, T.J. A spatially variable power law tropospheric correction technique for InSAR data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Williams, S.; Bock, Y.; Fang, P.; Cecil, H. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products. J. Geophys. Res. Solid Earth. 1998, 103, 51–67. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Wei, J.; Duan, M.; Wu, L.; Hou, J.; Zhu, J. Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth-Science Rev. 2019, 192, 258–284. [Google Scholar] [CrossRef]
- Li, Z.W.; Ding, X.L.; Liu, G.X. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations: Algorithms and some test results. J. Atmos. Solar-Terrestrial Phys. 2004, 66, 907–917. [Google Scholar] [CrossRef]
- Li, Z.; Fielding, E.J.; Cross, P.; Preusker, R. Advanced InSAR atmospheric correction: MERIS/MODIS combination and stacked water vapour models. Int. J. Remote Sens. 2009, 30, 3343–3363. [Google Scholar] [CrossRef]
- Li, Z.W.; Xu, W.B.; Feng, G.C.; Hu, J.; Wang, C.C.; Ding, X.L.; Zhu, J.J. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model. Geophys. J. Int. 2012, 189, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.; Peltzer, G.; Li, Z. Journal of Geophysical Research: Solid Earth Improving InSAR geodesy using Global Atmospheric Models. J. Geophys. Res. Solid Earth 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Solid Earth Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth Res. 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arikan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 49, 3460–3470. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for monitoring localized deformation phenomena based on small baseline differential SAR interferograms. IEEE Int. Geosci. Remote Sens. Symposium 2003, 40, 1237–1239. [Google Scholar]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Lundgren, P. Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California. Remote Sens. Environ. 2007, 109, 20–28. [Google Scholar] [CrossRef]
- Xu, W.B.; Li, Z.W.; Ding, X.L.; Wang, C.C.; Feng, G.C. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area. Chin. J. Geophys. Ed. 2012, 55, 452–461. [Google Scholar]
- Li, S.; Li, Z.; Hu, J.; Sun, Q.; Yu, X. Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm. Chin. J. Geophys. 2013, 56, 1476–1486. (In Chinese) [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Celani, A.; Seminara, A. Large-scale anisotropy in scalar turbulence. Phys. Rev. Lett. 2006, 96, 1–4. [Google Scholar] [CrossRef]
- Elliott, J.R.; Biggs, J.; Parsons, B.; Wright, T.J. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett. 2008, 35, 82–90. [Google Scholar] [CrossRef]
- Xu, B.; Li, Z.W.; Wang, Q.J.; Jiang, M.; Zhu, J.J.; Ding, X.L. A refined strategy for removing composite errors of SAR interferogram. IEEE Geosci. Remote Sens. Lett. 2014, 11, 143–147. [Google Scholar] [CrossRef]
- Goldstein, R.M. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1997, 25, 4035–4038. [Google Scholar] [CrossRef]
Number | Satellite | Track Number | Imaging Time | |
---|---|---|---|---|
1 | ENVISAT | 16,757 | 20050514 | 0 |
2 | ENVISAT | 17,258 | 20050618 | –198.77 |
3 | ENVISAT | 17,759 | 20050723 | 101.75 |
4 | ENVISAT | 18,260 | 20050827 | 124.26 |
5 | ENVISAT | 19,763 | 20051210 | –441.12 |
6 | ENVISAT | 21,266 | 20060325 | –242.02 |
7 | ENVISAT | 21,767 | 20060429 | –197.76 |
8 | ENVISAT | 24,773 | 20061125 | –603.90 |
9 | ENVISAT | 25,274 | 20061230 | –98.02 |
10 | ENVISAT | 26,276 | 20070310 | –47.40 |
11 | ENVISAT | 26,777 | 20070414 | –641.67 |
12 | ENVISAT | 27,779 | 20070623 | –455.47 |
13 | ENVISAT | 29,282 | 20071006 | –624.64 |
14 | ENVISAT | 29,783 | 20071110 | –279.92 |
15 | ENVISAT | 31,286 | 20080223 | –724.89 |
16 | ENVISAT | 31,787 | 20080329 | –194.16 |
17 | ENVISAT | 32,288 | 20080503 | –539.79 |
18 | ENVISAT | 33,791 | 20080816 | –349.14 |
19 | ENVISAT | 37,298 | 20090418 | –629.36 |
20 | ENVISAT | 37,799 | 20090523 | –427.74 |
21 | ENVISAT | 38,300 | 20090627 | –224.70 |
22 | ENVISAT | 38,801 | 20090801 | –532.88 |
23 | ENVISAT | 40,304 | 20091114 | –274.60 |
24 | ENVISAT | 41,807 | 20100227 | –717.09 |
25 | ENVISAT | 42,308 | 20100403 | –89.48 |
26 | ENVISAT | 44,312 | 20100821 | –587.65 |
27 | ENVISAT | 44,813 | 20100925 | –244.90 |
Name | Lat 1 (°) | Lon 2 (°) | Elev 3 (m) | Name | Lat (°) | Lon (°) | Elev (m) |
---|---|---|---|---|---|---|---|
AZU1 | 34.126 | 117.896 | 144.75 | MAT2 | 33.857 | 117.437 | 398.30 |
BGIS | 33.967 | 118.160 | 2.82 | MHMS | 33.939 | 118.244 | −2.44 |
BKMS | 33.962 | 118.095 | 11.00 | MLFP | 33.918 | 117.318 | 472.95 |
BLSA | 33.800 | 118.029 | −23.11 | MTA1 | 34.055 | 118.246 | 72.65 |
CCCO | 33.876 | 118.211 | −16.93 | OXYC | 34.129 | 118.207 | 209.82 |
CCCS | 33.863 | 117.865 | 31.82 | PMHS | 33.903 | 118.154 | −11.13 |
CIT1 | 34.137 | 118.127 | 215.33 | PVHS | 33.779 | 118.372 | 259.58 |
CLAR | 34.110 | 117.709 | 373.62 | RTHS | 34.089 | 117.353 | 328.67 |
CNPP | 33.858 | 117.609 | 300.29 | SACY | 33.743 | 117.896 | −11.24 |
CRHS | 33.824 | 118.273 | −23.55 | SBCC | 33.553 | 117.661 | 88.68 |
CSDH | 33.861 | 118.257 | −9.19 | SGHS | 34.089 | 118.109 | 79.86 |
CVHS | 34.082 | 117.902 | 119.09 | SILK | 34.103 | 118.264 | 106.22 |
ELSC | 34.030 | 118.208 | 61.19 | SNHS | 33.927 | 117.929 | 66.41 |
FVPK | 33.662 | 117.936 | −11.54 | SPMS | 33.993 | 117.849 | 207.03 |
GVRS | 34.047 | 118.113 | 154.52 | TORP | 33.798 | 118.331 | −5.22 |
HOLP | 33.925 | 118.168 | −6.67 | TWMS | 33.972 | 117.726 | 208.07 |
JPLM | 34.205 | 118.173 | 424.00 | USC1 | 34.024 | 118.285 | 21.93 |
LASC | 33.928 | 118.307 | 24.67 | VDCY | 34.179 | 118.220 | 318.18 |
LBC1 | 33.832 | 118.137 | −21.93 | VTIS | 33.713 | 118.294 | 59.49 |
LBC2 | 33.792 | 118.173 | −28.49 | VYAS | 34.031 | 117.992 | 56.45 |
LBCH | 33.788 | 118.203 | −27.56 | WCHS | 34.062 | 117.911 | 100.10 |
LONG | 34.112 | 118.003 | 74.27 | WHC1 | 33.980 | 118.031 | 94.30 |
LORS | 34.133 | 117.754 | 448.88 |
Elevation | ≤15 m | ≤140 m and ≥15 m | ≥140 m |
---|---|---|---|
Class | low | medium | high |
Name | GPS | SBAS | GACOS-SBAS | GPS-SBAS | GPS-GACOS-SBAS |
---|---|---|---|---|---|
LBC2 | −1.49 | −1.08 | −1.11 | −0.41 | −0.38 |
LBCH | −1.44 | −1.00 | −1.08 | −0.44 | −0.36 |
CRHS | −1.51 | −1.04 | −1.18 | −0.47 | −0.33 |
BLSA | −2.59 | −2.10 | −1.98 | −0.49 | −0.61 |
LBC1 | −2.51 | −1.98 | −1.90 | −0.53 | −0.61 |
CCCO | −1.94 | −1.55 | −1.55 | −0.39 | −0.39 |
FVPK | −1.77 | −1.30 | −1.18 | −0.47 | −0.59 |
SACY | −2.24 | −1.95 | −1.72 | −0.29 | −0.52 |
PMHS | −1.43 | −1.84 | −1.72 | 0.41 | 0.29 |
CSDH | −1.41 | −0.90 | −0.98 | −0.51 | −0.43 |
HOLP | −1.92 | −1.93 | −1.82 | 0.01 | −0.10 |
TORP | −1.59 | −1.08 | −1.34 | −0.51 | −0.25 |
MHMS | −1.87 | −1.62 | −1.62 | −0.25 | −0.25 |
BGIS | −1.77 | −1.99 | −1.82 | 0.22 | 0.05 |
BKMS | −1.70 | −1.78 | −1.52 | 0.08 | −0.18 |
Name | GPS | SBAS | GACOS-SBAS | GPS-SBAS | GPS-GACOS-SBAS |
---|---|---|---|---|---|
USC1 | −1.66 | −1.69 | −1.69 | 0.03 | 0.03 |
LASC | −1.46 | −1.45 | −1.56 | −0.01 | 0.10 |
CCCS | −1.70 | −1.68 | −1.32 | −0.02 | −0.38 |
VYAS | −1.49 | −1.66 | −1.29 | 0.17 | −0.20 |
VTIS | −1.66 | −1.21 | −1.55 | −0.45 | −0.11 |
ELSC | −1.39 | −1.75 | −1.66 | 0.36 | 0.27 |
SNHS | −1.29 | −1.54 | −1.18 | 0.25 | −0.11 |
MTA1 | −1.60 | −1.72 | −1.70 | 0.12 | 0.10 |
LONG | −1.43 | −2.10 | −1.96 | 0.67 | 0.53 |
SGHS | −1.39 | −1.80 | −1.58 | 0.41 | 0.19 |
WHC1 | −1.66 | −1.84 | −1.54 | 0.18 | −0.12 |
WCHS | −1.64 | −1.94 | −1.54 | 0.30 | −0.10 |
SILK | −1.43 | −1.61 | −1.63 | 0.18 | 0.20 |
CVHS | −1.75 | −1.96 | −1.56 | 0.21 | −0.19 |
Name | GPS | SBAS | GACOS-SBAS | GPS-SBAS | GPS-GACOS-SBAS |
---|---|---|---|---|---|
AZU1 | −1.44 | −1.84 | −1.47 | 0.40 | 0.03 |
GVRS | −1.58 | −1.83 | −1.66 | 0.25 | 0.08 |
SPMS | −1.44 | −1.63 | −1.30 | 0.19 | −0.14 |
TWMS | −1.44 | −1.34 | −1.02 | −0.10 | −0.42 |
OXYC | −1.40 | −1.78 | −1.78 | 0.38 | 0.38 |
CIT1 | −1.21 | −1.59 | −1.49 | 0.38 | 0.28 |
PVHS | −1.57 | −1.08 | −1.64 | −0.49 | 0.07 |
CNPP | −1.32 | −1.12 | −0.93 | −0.20 | −0.39 |
VDCY | −1.64 | −1.59 | −1.71 | −0.05 | 0.07 |
RTHS | −1.22 | −1.22 | −0.74 | 0.00 | −0.48 |
CLAR | −0.96 | −1.30 | −1.02 | 0.34 | 0.06 |
MAT2 | −1.22 | −1.26 | −1.06 | 0.04 | −0.16 |
JPLM | −1.44 | −1.63 | −1.75 | 0.19 | 0.31 |
LORS | −1.34 | −1.59 | −1.35 | 0.25 | 0.01 |
MLFP | −1.24 | −1.27 | −0.92 | 0.03 | −0.32 |
Low | Medium | High | Total | |
---|---|---|---|---|
Number of increased errors | 6 | 4 | 6 | 16 |
Number of reduced errors | 7 | 9 | 8 | 24 |
Maximum error (cm/a) | 0.23 | 0.36 | 0.48 | 0.48 |
σ(SBAS-InSAR) | 0.40 | 0.30 | 0.27 | 0.34 |
σ(GACOS-based SBAS-InSAR) | 0.39 | 0.23 | 0.26 | 0.31 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Yu, W.; Xu, B.; Wei, G. Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California. Sensors 2019, 19, 3894. https://doi.org/10.3390/s19183894
Wang Q, Yu W, Xu B, Wei G. Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California. Sensors. 2019; 19(18):3894. https://doi.org/10.3390/s19183894
Chicago/Turabian StyleWang, Qijie, Wenyan Yu, Bing Xu, and Guoguang Wei. 2019. "Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California" Sensors 19, no. 18: 3894. https://doi.org/10.3390/s19183894
APA StyleWang, Q., Yu, W., Xu, B., & Wei, G. (2019). Assessing the Use of GACOS Products for SBAS-InSAR Deformation Monitoring: A Case in Southern California. Sensors, 19(18), 3894. https://doi.org/10.3390/s19183894