Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. True Color Reconstruction from Visible-Band Satellite Products
2.2. GOES-ABI Processing
2.3. Chromatic Domain Mapping
3. Results
3.1. CDM Product Verification and 13 October 2018 GOES-ABI Sequence
3.2. 10 January 2019 GOES-ABI Sequence
3.3. 24 January 2019 GOES-ABI Sequence
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sellman, B. Coastal Zone Color Scanner (CZCS) and Related Technologies. In Satellite Remote Sensing for Resources Development; Springer Science and Business Media LLC: Berlin, Germany, 1986; pp. 93–97. [Google Scholar]
- McClain, C.R.; Meister, G.; Monosmith, B. Satellite Ocean Color Sensor Design Concepts and Performance Requirements. Exp. Methods Phys. Sci. 2014, 47, 73–119. [Google Scholar]
- Hooker, S.; McClain, C. The calibration and validation of SeaWiFS data. Prog. Oceanogr. 2000, 45, 427–465. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11–664. [Google Scholar] [CrossRef]
- Barnes, B.B.; Cannizzaro, J.P.; English, D.C.; Hu, C. Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: An assessment of methods. Remote Sens. Environ. 2019, 220, 110–123. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [PubMed]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. GOCI, the world’s first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity. J. Geophys. Res. Oceans 2012, 117, C09004. [Google Scholar] [CrossRef]
- Gaube, P.; McGillicuddy, D.J. The influence of Gulf Stream eddies and meanders on near-surface chlorophyll. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2017, 122, 1–16. [Google Scholar] [CrossRef]
- Mahadevan, A. Submesoscale Processes. In Encyclopedia of Ocean Sciences, 3rd ed.; Marine Biogeochemistry; Cochron, H.J., Bukuniewicz, P.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 35–41. [Google Scholar]
- Thomas, L.N.; Tandon, A.; Mahadevan, A. Submesoscale processes and dynamics. In Ocean Modeling in an Eddying Regime; Hecht, M.W., Hasumi, H., Eds.; Geophysical Monograph Series—AGU: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Hosegood, P.; Nightingale, P.; Rees, A.; Widdicombe, C.; Woodward, E.; Clark, D.; Torres, R. Nutrient pumping by submesoscale circulations in the mauritanian upwelling system. Prog. Oceanogr. 2017, 159, 223–236. [Google Scholar] [CrossRef] [Green Version]
- IOCCG. Ocean-Colour Observations from a Geostationary Orbit. In Reports of the International Ocean-Colour Coordinating Group; Antoine, D., Ed.; IOCCG: Dartmouth, NS, Canada, 2012. [Google Scholar]
- Ruddick, K.; Neukermans, G.; Vanhellemont, Q.; Jolivet, D. Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: A review of recent results. Remote Sens. Environ. 2014, 146, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A Closer Look at the ABI on the GOES-R Series. Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Ladner, S.; Lewis, M.D.; Jarosz, E.; Crout, R.L.; Lawson, A.; Smith, T.A.; McCarthy, S.; Cayula, S. The hyperspectral signatures of complex ocean frontal boundaries: The example of cold-air outbreaks in the northern Gulf of Mexico. Ocean Sens. Monit. XI 2019. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Neukermans, G.; Ruddick, K. Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution. Remote Sens. Environ. 2014, 146, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Schmidt, C.C.; Schmit, T.J.; Hillger, D.W. A case for natural colour imagery from geostationary satellites, and an approximation for the GOES-R ABI. Int. J. Remote Sens. 2011, 33, 3999–4028. [Google Scholar] [CrossRef]
- Hillger, D.; Grasso, L.; Miller, S.; Brummer, R.; DeMaria, R. Synthetic advanced baseline imager true-color imagery. J. Appl. Remote Sens. 2011, 5, 053520. [Google Scholar] [CrossRef]
- Gladkova, I.; Shahriar, F.; Grossberg, M.; Bonev, G.; Hillger, D.; Miller, S. Virtual green band for GOES-R. In Proceedings of the SPIE 8153, Optical Engineering and Applications, Earth Observing Systems XVI, San Diego, CA, USA, 13 September 2011. [Google Scholar] [CrossRef]
- Grossberg, M.D.; Shariar, F.; Gladkova, I.; Alabi, P.K.; Hillger, D.W.; Miller, S.D. Estimating true color imagery for GOES-R. In Proceedings of the SPIE 8048, Defense, Security, and Sensing, Algorithms and Technologies for Multipspectral, Hyperspectral, and Ultraspectral Imagery XVII, Orlando, FL, USA, 25–28 April 2011. [Google Scholar] [CrossRef]
- Murata, H.; Saitoh, K.; Sumida, Y. True color imagery rendering for Himawari-8 with a color reproduction approach based on the CIE XYZ color system. J. Meteorol. Soc. Jpn. 2018, 96, 211–238. [Google Scholar] [CrossRef]
- Bah, M.K.; Gunshor, M.M.; Schmit, T.J. Generation of GOES-16 True Color Imagery without a Green Band. Earth Space Sci. 2018, 5, 549–558. [Google Scholar] [CrossRef]
- CIRA/NOAA. GeoColor Product Quick Guide. Available online: https://www.star.nesdis.noaa.gov/GOES/documents/QuickGuide_CIRA_Geocolor_20171019.pdf (accessed on 30 May 2019).
- Ladner, S.; Crout, R.; Lawson, A.; Martinolich, P.M.; Bowers, J.; Arnone, R.A. Validation Test Report for the Automated Optical Processing System (AOPS) Version 16. In U.S. Naval Research Laboratory Technical Memorandum; NRL/MR/7330-16-9697; United States Naval Research Laboratory: Washington, DC, USA, 2016; p. 78. [Google Scholar]
- Baith, K.; Lindsay, R.; Fu, G.; McClain, C.R. Data analysis system for ocean-color satellite sensors. Eos Trans. Am. Geophys. Union 2006, 82, 18. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755. [Google Scholar] [CrossRef] [PubMed]
- McCain, C.; Hooker, S.; Feldman, G.; Bontempi, P. Satellite data for ocean biology, biogeochemistry, and climate research. Eos 2006, 87, 337. [Google Scholar] [CrossRef]
- Mobley, C.D.; Werdell, P.J.; Franz, B.A.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry: A Tutorial and Documentaion of the Algorithms Used by the NASA Ocean Biology Processing Group. NASA/TM-2016-217551, GSFC-E-DAA-TN35509. Available online: https://oceancolor.gsfc.nasa.gov/docs/AtmosphericCorrectionTutorial.pdf (accessed on 10 May 2019).
- Banks, A.C.; Melin, F. An assessment of cloud masking schemes for satellite ocean colour data of marine optical extremes. Int. J. Remote Sens. 2015, 36, 797–821. [Google Scholar] [CrossRef] [Green Version]
- Wernand, M.R.; Van Der Woerd, H.J.; Török, P. Spectral analysis of the Forel-Ule ocean colour comparator scale. J. Eur. Opt. Soc. Rapid Publ. 2010, 5, 5. [Google Scholar] [CrossRef]
- Wernand, M.R.; Hommersom, A.; Van Der Woerd, H.J. MERIS-based ocean colour classification with the discrete Forel–Ule scale. Ocean Sci. 2013, 9, 477–487. [Google Scholar] [CrossRef]
- Broadbent, A.D. Colorimetry, Methods. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- CIE. CIE 15, International Commisssioin on Illumination, Technical Report: Colorimetry, 3rd ed.; 10 CFR 430 Subpart B, App. R. 4.1.1; Carter, E.C., Ohno, Y., Pointer, M.R., Robertson, A.R., Seve, R., Schanda, J.D., Witt, K., Eds.; International Commission on Illumination: Vienna, Austria, 2004; p. 82. ISBN 3-901-906-33-9. [Google Scholar]
- Schwiegerling, J. Field Guide to Visual and Ophthalmic Optics; SPIE Press: Bellingham, WA, USA, 2004. [Google Scholar] [CrossRef]
- Werdell, P.J.; Bailey, S.W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Organelli, E.; Bricaud, A.; Gentili, B.; Antoine, D.; Vellucci, V. Retrieval of Colored Detrital Matter (CDM) light absorption coefficients in the Mediterranean Sea using field and satellite ocean color radiometry: Evaluation of bio-optical inversion models. Remote Sens. Environ. 2016, 186, 297–310. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; Reports of the International Ocean-Colour Coordinating Group, No. 5; Lee., Z.-P., Ed.; IOCCG: Dartmouth, NS, Canada, 2006; p. 126. [Google Scholar]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Jolliff, J.K.; Ladner, S.; Lewis, M.D.; Jarosz, E.; Lawson, T.A.; Smith, T.A.; Penko, A.; McCarthy, S. Hyperspectral determination of ocean color as an ocean monitoring tool: Example applications in the Gulf of Mexico. In Proceedings of the SPIE 10631, Ocean Sensing and Monitoring X, Orlando, FL, USA, 25 May 2018. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Jarosz, E.; Ladner, S.; Smith, T.A.; Anderson, S.; Dykes, J. The optical signature of a bottom boundary layer ventilation event in the northern Gulf of Mexico’s hypoxic zone. Geophys. Res. Lett. 2018, 45, 8390–8398. [Google Scholar] [CrossRef]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Ransibrahmanakul, V.; Villareal, T.A. Detecting Karenia brevis blooms and algal resuspension in the western Gulf of Mexico with satellite ocean color imagery. Harmful Algae 2005, 4, 992–1003. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Odhe, T. Investigation of hydrogen sulphide eruptions along the Namibian coastline using different remote sensing systems. Cent. Eur. J. Geosci. 2009, 1, 340–346. [Google Scholar]
- Zhao, J.; Hu, C.; Lapointe, B.; Melo, N.; Johns, E.M.; Smith, R.H. Satellite-Observed Black Water Events off Southwest Florida: Implications for Coral Reef Health in the Florida Keys National Marine Sanctuary. Remote Sens. 2013, 5, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Purkis, S.; Cavalcante, G.; Rohtla, L.; Oehlert, A.M.; Harris, P.M.; Swart, P.K. Hydrodynamic control of whitings on Great Bahama Bank. Geology 2017, 45, 939–942. [Google Scholar] [CrossRef]
- Dagg, M. Physical and biological responses to the passage of a winter storm in the coastal and inner shelf waters of the northern Gulf of Mexico. Cont. Shelf Res. 1988, 8, 167–178. [Google Scholar] [CrossRef]
- Villanueva, E.E.; Mendoza, V.M.; Adem, J. Sea surface temperature and mixed layer depth changes due to cold-air outbreak in the Gulf of Mexico. Atmofera 2010, 23, 325–346. [Google Scholar]
- Bledsoe, E.L.; Phlips, E.J. Relationships between Phytoplankton Standing Crop and Physical, Chemical, and Biological Gradients in the Suwannee River and Plume Region, USA. Estuaries 2000, 23, 458–473. [Google Scholar] [CrossRef]
- He, R.; Weisberg, R.; Stovall-Leonard, A.; Coble, P.G.; Conmy, R.; Heil, C.; Nababan, B.; Jolliff, J.K.; Walsh, J.J.; Zhang, H.; et al. Dispersal of the Suwannee River plume over the West Florida shelf: Simulation and observation of the optical and biochemical consequences of a flushing event. Geophys. Res. Lett. 2003, 30, 1790–1793. [Google Scholar]
- USGS, National Water Infromation System. USGS 02315500 SUWANNEE RIVER AT WHITE SPRINGS, FLA. Available online: https://waterdata.usgs.gov/usa/nwis/uv?02315500 (accessed on 30 May 2019).
- Passalacqua, G.A.; Sheinbaum, J.; Martínez, J.A. Sea surface temperature influence on a winter cold front position and propagation: Air-sea interactions of the ‘Nortes’ winds in the Gulf of Mexico. Atmos. Sci. Lett. 2016, 17, 302–307. [Google Scholar] [CrossRef]
- Black, B.D.; Weisberg, R.H.; Li, Z. An upwelling case study on Florida’s west coast. J. Geophys. Res. Oceans 2000, 105, 11459–11469. [Google Scholar]
- Chen, R.F.; Bissett, P.; Coble, P.; Conmy, R.; Gardner, G.; Moran, M.A.; Wang, X.; Wells, M.L.; Whelan, P.; Zepp, R.G. Chromophoric dissolved organic matter (CDOM) source characterization in the Louisiana Bight. Mar. Chem. 2004, 89, 257–272. [Google Scholar] [CrossRef]
- Huh, O.K.; Rouse, L.J., Jr.; Walker, N.D. Cold Air Outbreaks over the Northwest Florida Continental Shelf: Heat Flux processes and Hyrdographic Changes. J. Geophys. Res. Oceans 1984, 89, 717–726. [Google Scholar] [CrossRef]
- Nowlin, W.D.; Parker, C.A. Effects of a Cold-Air Outbreak on Shelf Waters of the Gulf of Mexico. J. Phys. Oceanogr. 1974, 4, 467–486. [Google Scholar] [CrossRef]
- Salisbury, J.E.; Campbell, J.W.; Linder, E.; David Meeker, L.; Müller-Karger, F.E.; Vörösmarty, C.J. On the seasonal correlation of surface particle fields with wind stress and Mississippi discharge in the northern Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 1187–1203. [Google Scholar] [CrossRef]
- IOCCG. Why Ocean Colour? The Societal Benefits of Ocean Clour Technology; Platt, T., Hoepffner, N., Stuart, V., Brown, C., Eds.; International Ocean-Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2008; p. 141. [Google Scholar] [CrossRef]
- Yang, H.; Arnone, R.; Jolliff, J. Estimating advective near-surface currents from ocean color satellite images. Remote Sens. Environ. 2015, 158, 1–14. [Google Scholar] [CrossRef]
- Novoa, S.; Wernand, M.; Van Der Woerd, H.J. WACODI: A generic algorithm to derive the intrinsic color of natural waters from digital images. Limnol. Oceanogr. Methods 2015, 13, 697–711. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Gao, Z.; Jiang, X.; Shang, W.; Ning, J.; Song, D.; Ai, J. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea. Mar. Pollut. Bull. 2018, 128, 408–414. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Brewin, T.G.; Phillips, J.; Rose, S.; Abdulaziz, A.; Wimmer, W.; Sathyendranath, S.; Platt, T. A Printable Device for Measuring Clarity and Colour in Lake and Nearshore Waters. Sensors 2019, 19, 936. [Google Scholar] [CrossRef]
- Guerra, A.G.C.; Francisco, F.; Villate, J.; Agelet, F.A.; Bertolami, O.; Rajan, K. On small satellites for oceanography. Acta Astronaut. 2016, 127, 404–423. [Google Scholar] [CrossRef]
- Frouin, R.J.; Franz, B.A.; Ibrahim, A.; Knobelspiesse, K.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Dierssen, H.M.; Tan, J.; Dubovik, O.; et al. Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era. Front. Earth Sci. 2019, 7, 145. [Google Scholar] [CrossRef]
- Krümmel, O. Die Farbe der Meere. Geophys. Beob. Plankton-Exped. Ergeb. Plankton-Exped. Humboldt-Stift. 1893, 11, 89–110. (In Germany) [Google Scholar]
- Pitarch, J.; Van Der Woerd, H.J.; Brewin, R.J.; Zielinski, O. Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations. Remote Sens. Environ. 2019, 231, 111249. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jolliff, J.K.; Lewis, M.D.; Ladner, S.; Crout, R.L. Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data. Sensors 2019, 19, 3900. https://doi.org/10.3390/s19183900
Jolliff JK, Lewis MD, Ladner S, Crout RL. Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data. Sensors. 2019; 19(18):3900. https://doi.org/10.3390/s19183900
Chicago/Turabian StyleJolliff, Jason K., M. David Lewis, Sherwin Ladner, and Richard L. Crout. 2019. "Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data" Sensors 19, no. 18: 3900. https://doi.org/10.3390/s19183900
APA StyleJolliff, J. K., Lewis, M. D., Ladner, S., & Crout, R. L. (2019). Observing the Ocean Submesoscale with Enhanced-Color GOES-ABI Visible Band Data. Sensors, 19(18), 3900. https://doi.org/10.3390/s19183900