Cadmium-Sensitive Measurement Using a Nano-Copper-Enhanced Carbon Fiber Electrode
Abstract
:1. Introduction
2. Experimental Methods
2.1. Fabrication of the Carbon Fiber Electrode
2.2. Nano-Copper Deposition and Electrochemical Measurements
3. Results and Discussion
3.1. Exploration of Nano-Copper Modification Conditions on the Surface of Carbon Fiber
3.1.1. Modification of Nano-Copper on Carbon Fiber
3.1.2. Characterization of Charge Transferability
3.1.3. Morphologies of Carbon Fibers with and without Nano-Copper
3.2. DPV Response Comparison of the Carbon Fiber Electrode with and without Nano-Copper
3.3. The Influence of pH
3.4. Determination of the Sensitivity, Detection Limit, and Linear Range for Cd2+ Measurement
3.5. The Selectivity of the Carbon Fiber Electrode with Nano-Copper
3.6. Analytical Application to Water Samples Collected from Water Sources
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment, Chapter in: Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 3, pp. 133–164. [Google Scholar]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The sources of chemical contaminants in food and their health implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F. Technical solutions for the safe utilization of heavy metal-contaminated farmland in China: A critical review. Land Degrad. Dev. 2019, 30, 1773–1784. [Google Scholar] [CrossRef]
- Wang, L.; Cui, X.; Cheng, H.; Chen, F.; Wang, J.; Zhao, X.; Lin, C.; Pu, X. A review of soil cadmium contamination in China including a health risk assessment. Environ. Sci. Pollut. Res. 2015, 22, 16441. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Huff, J.; Lunn, R.M.; Waalkes, M.P.; Tomatis, L.; Infante, P.F. Cadmium-induced cancers in animals and in humans. Int. J. Occup. Environ. Health 2007, 13, 202–212. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Taylor, S.L.; Committee on Evaluation of the Safety of Fishery Products. Seafood Safety; National Academy Press: Washington, DC, USA, 1991. [Google Scholar]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Yasui, T.; Ichikawa, R.; Hsieh, Y.D.; Hayashi, K.; Cahyadi, H.; Hindle, F.; Sakaguchi, Y.; Iwata, T.; Mizutani, Y.; Yamamoto, H.; et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Yeo, W.G. Terahertz Spectroscopic Characterization and Imaging for Biomedical Applications. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2015. [Google Scholar]
- ATSDR. Toxicological Profile for Cesium; Case Studies in Environmental Medicine; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2004.
- Ganrot, P. Metabolism and possible health effects of aluminum biochemistry and metabolism of A13+ and similar ions: A Review. Environ. Health Perspect. 1986, 65, 363–441. [Google Scholar]
- Peterson, J.; MacDonell, M.; Haroun, L.; Monette, F.; Hildebrand, R.D.; Taboas, A. Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas; Argonne National Laboratory Environmental Science Division: Washington, DC, USA, 2007; Volume 133.
- Varriale, A.; Staiano, M.; Rossi, M.; D’Auria, S. High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection. Anal. Chem. 2007, 79, 5760–5762. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Aswathi, R.; Sandhya, K.Y. Ultrasensitive and selective electrochemical sensing of Hg (II) ions in normal and sea water using solvent exfoliated MoS2: Affinity matters. J. Mater. Chem. A 2018, 6, 14602–14613. [Google Scholar] [CrossRef]
- Sapountzi, E.; Braiek, M.; Chateaux, J.F.; Jaffrezic-Renault, N.; Lagarde, F. Recent advances in electrospun nanofibre interfaces for biosensing devices. Sensors. 2017, 17, 1887. [Google Scholar] [CrossRef]
- Lohse, K.R.; Lang, C.E.; Boyd, L.A. Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation. Stroke 2014, 45, 2053–2058. [Google Scholar] [CrossRef]
- Piñeros, M.A.; Shaff, J.E.; Kochian, L.V. Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of thlaspi species and wheat. Plant Physiol. 1998, 116, 1393–1401. [Google Scholar] [CrossRef]
- Xuan, X.; Park, J.Y. A miniaturized and flexible cadmium and lead ion detection sensor based on micro-patterned reduced graphene oxide/carbon nanotube/bismuth composite electrodes. Sens. Actuators B Chem. 2018, 255, 1220–1227. [Google Scholar] [CrossRef]
- Mastouri, A.; Peulon, S.; Farcage, D.; Bellakhal, N.; Chaussé, A. Perfect additivity of microinterface arrays for liquid-liquid measurements: Application to cadmium ions quantification. Electrochim. Acta 2014, 120, 212–218. [Google Scholar] [CrossRef]
- Huang, H. Electrochemical Application and AFM Characterization of Nanocomposites: Focus on Interphase Properties. Ph.D. Thesis, Shandong University, Jinan, China, 2017. [Google Scholar]
- Yang, D.; Wang, L.; Chen, Z.; Megharaj, M.; Naidu, R. Voltammetric determination of lead (II) and cadmium (II) using a bismuth film electrode modified with mesoporous silica nanoparticles. Electrochim. Acta 2014, 132, 223–229. [Google Scholar] [CrossRef]
- Shah, A.; Sultan, S.; Zahid, A.; Aftab, S.; Nisar, J.; Nayab, S.; Qureshi, R.; Khan, G.S.; Hussain, H.; Ozkan, S.A. Highly sensitive and selective electrochemical sensor for the trace level detection of mercury and cadmium. Electrochim. Acta 2017, 258, 1397–1403. [Google Scholar] [CrossRef]
- Rahbar, N.; Parham, H. Carbon paste electrode modified with cuo-nanoparticles as a probe for square wave voltammetric determination of atrazine. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, B.; Gao, F.; Song, P.; Li, L.; Zhang, Y.; Lu, C.; Goh, M.C.; Du, Y. Ultra-stable electrochemical sensor for detection of caffeic acid based on platinum and nickel jagged-like nanowires. Nanoscale Res. Lett. 2019, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Chamjangali, M.A.; Kouhestani, H.; Masdarolomoor, F.; Daneshinejad, H. A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly (pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sens. Actuators B Chem. 2015, 216, 384–393. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Shi, A.; You, T. Simultaneous stripping determination of cadmium and lead ions based on the N-doped carbon quantum dots-graphene oxide hybrid. Sens. Actuators B Chem. 2018, 255, 1762–1770. [Google Scholar] [CrossRef]
- Li, L.; Liu, B.; Chen, Z. Colorimetric and dark-field microscopic determination of cadmium(II) using unmodified gold nanoparticles and based on the formation of glutathione-cadmium(II) complexes. Microchim. Acta 2019, 186, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, M.; Mihailovič, D. Simultaneous determination of copper, lead, and cadmium ions at a Mo6S9-xIx nanowires modified glassy carbon electrode using differential pulse anodic stripping voltammetry. Electrochim. Acta 2015, 154, 184–189. [Google Scholar] [CrossRef]
- Wu, L.; Fu, X.; Liu, H.; Li, J.; Song, Y. Comparative study of graphene nanosheet-and multiwall carbon nanotube-based electrochemical sensor for the sensitive detection of cadmium. Anal. Chim. Acta 2014, 851, 43–48. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Nitrogen-doped porous carbon derived from metal-organic gel for electrochemical analysis of heavy-metal ion. ACS Appl. Mater. Interfaces 2014, 6, 16210–16216. [Google Scholar] [CrossRef]
- Fort, C.I.; Cotet, L.C.; Vulpoi, A.; Turdean, G.L.; Danciu, V.; Baia, L.; Popescu, I.C. Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb (II) and Cd (II). Sens. Actuators B Chem. 2015, 220, 712–719. [Google Scholar] [CrossRef]
- Wardak, C. Solid contact cadmium ion-selective electrode based on ionic liquid and carbon nanotubes. Sens. Actuators B Chem. 2015, 209, 131–137. [Google Scholar] [CrossRef]
- Devasenathipathy, R.; Karthik, R.; Chen, S.M.; Mani, V.; Vasantha, V.S.; Ali, M.A.; Elshikh, M.S.; Lou, B.S.; Al-Hemaid, F.M.A. Potentiostatic electrochemical preparation of bismuth nanoribbons and its application in biologically poisoning lead and cadmium heavy metal ions detection. Electroanalysis 2015, 27, 2341–2346. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.; Qi, M.; Chen, F. Covalent anchoring of multifunctionized gold nanoparticles on electrodes towards an electrochemical sensor for the detection of cadmium ions. Anal. Methods 2015, 7, 5619–5626. [Google Scholar] [CrossRef]
- Niu, P.; Fernández-Sánchez, C.; Gich, M.; Ayora, C.; Roig, A. Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes. Electrochim. Acta 2015, 165, 155–161. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Krasnov, S.A.; Magdeev, I.M.; Sinyashin, O.G. Laws of chloride-ions oxidation on various electrodes and “Green” electrochemical method of higher α-Olefins processing. ECS Trans. 2010, 25, 7–15. [Google Scholar]
Electrode Type | Detection Limit (nM) | Sensitivity (nA/nM) | Linear Range (nM) | Detection Method | Reference |
---|---|---|---|---|---|
GCE modified with CNT/poly pyrocatechol violet/bismuth | 1.22 | 1.7 | 6.08~1820 | ASV | [29] |
N-doped carbon quantum dots-graphene oxide (NCQDs-Go)/GCE | 45.3 | 0.16 | 0.67~683.6 | ASV | [30] |
GCE modified with gold nanoparticles(AuNPs) | 0.045 | / | 0.0017~16.7 | Colorimetri | [31] |
Mo6S9 /GCE | 0.61 | 260 | 3.04~912 | DPASV | [32] |
Nanocomposite based on nanographene | 0.023 | 405 | 1.52~30.4 | DPASV | [33] |
Covalent anchoring of aryldiazonium salt | 2.2 | 8.83 × 106 | 25~500 | SWASV | [34] |
Bi doped mesoporous carbonxerogel/(GCE) | 308 | 2.67 × 106 | 6810~7540 | SWASV | [35] |
GCE modified with MWCNT | 2.3 | / | / | EIS | [36] |
Bismuth nanorib bons(BiNRs) sensor | 0.88 | 1.2 × 106 | 6.08~304 | DPASV | [37] |
Au-Ph-AuNP-glutathione(GSH) electrode | 0.01 | 9.17 × 107 | 0.1~10 | OSWV | [38] |
Bismuthnanoparticle-porous/carbon paste electrode(CPE) | 4.93 | 1.22 × 106 | 6.08~608 | SWASV | [39] |
Carbon fibre electrode modified with nano-copper | 10 | 3.7 × 108 | 10~105 | DPV | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Xu, Z.; Wang, X.; Wang, L.; Qiu, H.; Lu, K.; Zhang, W.; Feng, Q.; Chen, J.; Yang, L. Cadmium-Sensitive Measurement Using a Nano-Copper-Enhanced Carbon Fiber Electrode. Sensors 2019, 19, 4901. https://doi.org/10.3390/s19224901
Wu J, Xu Z, Wang X, Wang L, Qiu H, Lu K, Zhang W, Feng Q, Chen J, Yang L. Cadmium-Sensitive Measurement Using a Nano-Copper-Enhanced Carbon Fiber Electrode. Sensors. 2019; 19(22):4901. https://doi.org/10.3390/s19224901
Chicago/Turabian StyleWu, Jian, Zhipeng Xu, Xian Wang, Li Wang, Huadong Qiu, Kechao Lu, Wenhong Zhang, Qing Feng, Jun Chen, and Lei Yang. 2019. "Cadmium-Sensitive Measurement Using a Nano-Copper-Enhanced Carbon Fiber Electrode" Sensors 19, no. 22: 4901. https://doi.org/10.3390/s19224901
APA StyleWu, J., Xu, Z., Wang, X., Wang, L., Qiu, H., Lu, K., Zhang, W., Feng, Q., Chen, J., & Yang, L. (2019). Cadmium-Sensitive Measurement Using a Nano-Copper-Enhanced Carbon Fiber Electrode. Sensors, 19(22), 4901. https://doi.org/10.3390/s19224901