Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms
Abstract
:1. Introduction
2. Category I: Joint Series Compliance
3. Category II: Joint Parallel Compliance
4. Category III: Leg Distal Compliance
5. Integrating Multiple Categories of Compliance in A Leg
6. Discussion and Outlook
6.1. Realization Method
6.2. Compliance Nonlinearity
6.3. Versatility and Adaptation of Physical Compliance
6.4. Damping
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raibert, M.H. Legged Robots That Balance; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Gregorio, P.; Ahmadi, M.; Buehler, M. Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. Part B 1997, 27, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Hauser, K.; Bretl, T.; Latombe, J.C.; Harada, K.; Wilcox, B. Motion planning for legged robots on varied terrain. Int. J. Robot. Res. 2008, 27, 1325–1349. [Google Scholar] [CrossRef]
- Hyun, D.J.; Seok, S.; Lee, J.; Kim, S. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah. Int. J. Robot. Res. 2014, 33, 1417–1445. [Google Scholar] [CrossRef]
- Scarfogliero, U.; Stefanini, C.; Dario, P. The use of compliant joints and elastic energy storage in bio-inspired legged robots. Mech. Mach. Theory 2009, 44, 580–590. [Google Scholar] [CrossRef]
- Celaya, E.; Porta, J.M. A control structure for the locomotion of a legged robot on difficult terrain. IEEE Robot. Autom. Mag. 1998, 5, 43–51. [Google Scholar] [CrossRef]
- Ijspeert, A.J. Biorobotics: Using robots to emulate and investigate agile locomotion. Science 2014, 346, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Gu, D. Hybrid learning architecture for fuzzy control of quadruped walking robots. Int. J. Intell. Syst. 2005, 20, 131–152. [Google Scholar] [CrossRef]
- Geyer, H.; Seyfarth, A.; Blickhan, R. Compliant leg behaviour explains basic dynamics of walking and running. Proc. R. Soc. B: Biol. Sci. 2006, 273, 2861–2867. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Lichtwark, G. The anatomical arrangement of muscle and tendon enhances limb versatility and locomotor performance. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1540–1553. [Google Scholar] [CrossRef] [Green Version]
- Blickhan, R. The spring-mass model for running and hopping. J. Biomech. 1989, 22, 1217–1227. [Google Scholar] [CrossRef]
- Alexander, R. Three uses for springs in legged locomotion. Int. J. Robot. Res. 1990, 9, 53–61. [Google Scholar] [CrossRef]
- Roberts, T.J.; Azizi, E. Flexible mechanisms: The diverse roles of biological springs in vertebrate movement. J. Exp. Biol. 2011, 214, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, R.M. Tendon elasticity and muscle function. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 1001–1011. [Google Scholar] [CrossRef]
- Holmes, P.; Full, R.J.; Koditschek, D.; Guckenheimer, J. The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Rev. 2006, 48, 207–304. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; Watson, J.C.; Lichtwark, G.A. A catapult action for rapid limb protraction. Nature 2003, 421, 35–36. [Google Scholar] [CrossRef]
- Gronenberg, W. Fast actions in small animals: Springs and click mechanisms. J. Comp. Physiol. A 1996, 178, 727–734. [Google Scholar] [CrossRef]
- Alexander, R.M. Energy-saving mechanisms in walking and running. J. Exp. Biol. 1991, 160, 55–69. [Google Scholar]
- Roberts, T.J.; Azizi, E. The series-elastic shock absorber: Tendons attenuate muscle power during eccentric actions. J. Appl. Physiol. 2010, 109, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.J.; Konow, N. How tendons buffer energy dissipation by muscle. Exerc. Sport Sci. Rev. 2013, 41, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Raibert, M.H.; Brown, H.B., Jr.; Chepponis, M. Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res. 1984, 3, 75–92. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.; Wu, X.; Mei, T. A Wheeled Wall-Climbing Robot with Bio-Inspired Spine Mechanisms. J. Bionic Eng. 2015, 12, 17–28. [Google Scholar] [CrossRef]
- Chen, D.; Li, N.; Wang, H.; Chen, L. Effect of Flexible Spine Motion on Energy Efficiency in Quadruped Running. J. Bionic Eng. 2017, 14, 716–725. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, J.; Yoon, B.; Kim, K.-S.; Kim, S. The Role of Relative Spinal Motion during Feline Galloping for Speed Performance. J. Bionic Eng. 2014, 11, 517–528. [Google Scholar] [CrossRef]
- Fischer, M.S.; Blickhan, R. The tri-segmented limbs of therian mammals: Kinematics, dynamics, and self-stabilization—A review. J. Exp. Zool. Part A Comp. Exp. Biol. Banner 2006, 305, 935–952. [Google Scholar] [CrossRef]
- Blickhan, R.; Seyfarth, A.; Geyer, H.; Grimmer, S.; Wagner, H.; Günther, M. Intelligence by mechanics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 199–220. [Google Scholar] [CrossRef]
- Rummel, J.; Seyfarth, A. Stable Running with Segmented Legs. Int. J. Robot. Res. 2008, 27, 919–934. [Google Scholar] [CrossRef]
- Saranli, U.; Buehler, M.; Koditschek, D.E. RHex: A Simple and Highly Mobile Hexapod Robot. Int. J. Robot. Res. 2001, 20, 616–631. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.-H.; Lin, H.-Y.; Lin, H.-Y.; Chen, S.-T.; Lin, P.-C. A Bio-Inspired Hopping Kangaroo Robot with an Active Tail. J. Bionic Eng. 2014, 11, 541–555. [Google Scholar] [CrossRef]
- Zhong, B.; Zhou, Y.; Li, X.; Xu, M.; Zhang, S. Locomotion Performance of the Amphibious Robot on Various Terrains and Underwater with Flexible Flipper Legs. J. Bionic Eng. 2016, 13, 525–536. [Google Scholar] [CrossRef]
- Suzumori, K.; Faudzi, A.A. Trends in hydraulic actuators and components in legged and tough robots: A review. Adv. Robot. 2018, 32, 458–476. [Google Scholar] [CrossRef]
- Hunter, I.W.; Hollerbach, J.M.; Ballantyne, J.J.R.R. A comparative analysis of actuator technologies for robotics. Robot. Rev. 1991, 2, 299–342. [Google Scholar]
- Pratt, G.A.; Williamson, M.M. Series Elastic Actuators. In Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, 5–9 August 1995; Volume 391, pp. 399–406. [Google Scholar]
- Sun, J.; Guo, Z.; Zhang, Y.; Xiao, X.; Tan, J. A Novel Design of Serial Variable Stiffness Actuator Based on an Archimedean Spiral Relocation Mechanism. IEEE/ASME Trans. Mechatron. 2018, 23, 2121–2131. [Google Scholar] [CrossRef]
- Calanca, A.; Fiorini, P. Impedance control of series elastic actuators based on well-defined force dynamics. Robot. Auton. Syst. 2017, 96, 81–92. [Google Scholar] [CrossRef]
- Vanderborght, B.; Albu-Schaeffer, A.; Bicchi, A.; Burdet, E.; Caldwell, D.G.; Carloni, R.; Catalano, M.; Eiberger, O.; Friedl, W.; Ganesh, G.; et al. Variable impedance actuators: A review. Robot. Auton. Syst. 2013, 61, 1601–1614. [Google Scholar] [CrossRef] [Green Version]
- Pratt, J.E. Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots; Massachusetts Institute of Technology Cambridge Department of Electrical Engineering and Computer Science: Cambridge, MA, USA, 2000. [Google Scholar]
- Pratt, G.A. Legged robots at MIT: What’s new since Raibert? IEEE Robot. Autom. Mag. 2000, 7, 15–19. [Google Scholar] [CrossRef]
- Hutter, M.; Gehring, C.; Höpflinger, M.A.; Blösch, M.; Siegwart, R. Toward Combining Speed, Efficiency, Versatility, and Robustness in an Autonomous Quadruped. IEEE Trans. Robot. 2014, 30, 1427–1440. [Google Scholar] [CrossRef]
- Hutter, M.; Remy, C.D.; Hoepflinger, M.A.; Siegwart, R. Efficient and Versatile Locomotion with Highly Compliant Legs. IEEE/ASME Trans. Mechatron. 2013, 18, 449–458. [Google Scholar] [CrossRef]
- Hutter, M.; Sommer, H.; Gehring, C.; Hoepflinger, M.; Bloesch, M.; Siegwart, R. Quadrupedal locomotion using hierarchical operational space control. Int. J. Robot. Res. 2014, 33, 1047–1062. [Google Scholar] [CrossRef] [Green Version]
- Hutter, M. StarlETH & Co.: Design and Control of Legged Robots with Compliant Actuation. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2013. [Google Scholar]
- Hutter, M.; Gehring, C.; Jud, D.; Lauber, A.; Bellicoso, C.D.; Tsounis, V.; Hwangbo, J.; Bodie, K.; Fankhauser, P.; Bloesch, M.; et al. ANYmal-a highly mobile and dynamic quadrupedal robot. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, South Korea, 9–14 October 2016; pp. 38–44. [Google Scholar]
- Hutter, M.; Gehring, C.; Lauber, A.; Gunther, F.; Bellicoso, C.D.; Tsounis, V.; Fankhauser, P.; Diethelm, R.; Bachmann, S.; Bloesch, M.; et al. ANYmal-toward legged robots for harsh environments. Adv. Robot. 2017, 31, 918–931. [Google Scholar] [CrossRef]
- Fankhauser, P. Perceptive Locomotion for Legged Robots in Rough Terrain. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2018. [Google Scholar]
- Bellicoso, C.D.; Bjelonic, M.; Wellhausen, L.; Holtmann, K.; Günther, F.; Tranzatto, M.; Fankhauser, P.; Hutter, M. Advances in real-world applications for legged robots. J. Field Robot. 2018, 35, 1311–1326. [Google Scholar] [CrossRef]
- Vanderborght, B.; Tsagarakis, N.G.; Van Ham, R.; Thorson, I.; Caldwell, D.G. MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobino1D. Auton. Robot. 2011, 31, 55. [Google Scholar] [CrossRef]
- Vanderborght, B.; Tsagarakis, N.G.; Semini, C.; Ham, R.V.; Caldwell, D.G. MACCEPA 2.0: Adjustable compliant actuator with stiffening characteristic for energy efficient hopping. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 544–549. [Google Scholar]
- Van Ham, R.; Vanderborght, B.; Van Damme, M.; Verrelst, B.; Lefeber, D. MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robot. Auton. Syst. 2007, 55, 761–768. [Google Scholar] [CrossRef]
- Tsagarakis, N.G.; Laffranchi, M.; Vanderborght, B.; Caldwell, D.G. A compact soft actuator unit for small scale human friendly robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 4356–4362. [Google Scholar]
- Tsagarakis, N.G.; Cerda, G.M.; Caldwell, D.G. Compliant Leg Mechanism of Coman. Hum. Robot. A Ref. 2018, 1–28. [Google Scholar] [CrossRef]
- Tsagarakis, N.G.; Morfey, S.; Cerda, G.M.; Zhibin, L.; Caldwell, D.G. COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 673–678. [Google Scholar]
- Paskarbeit, J.; Schilling, M.; Schmitz, J.; Schneider, A. Obstacle crossing of a real, compliant robot based on local evasion movements and averaging of stance heights using singular value decomposition. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 3140–3145. [Google Scholar]
- Paskarbeit, J.; Annunziata, S.; Basa, D.; Schneider, A. A self-contained, elastic joint drive for robotics applications based on a sensorized elastomer coupling—Design and identification. Sens. Actuators A Phys. 2013, 199, 56–66. [Google Scholar] [CrossRef]
- Paskarbeit, J. Consider the robot-Abstraction of bioinspired leg coordination and its application to a hexapod robot under consideration of technical constraints. Ph.D. Thesis, Bielefeld University, Bielefeld, March 2017. [Google Scholar]
- Kuo, P.H.; Deshpande, A.D. Muscle-tendon units provide limited contributions to the passive stiffness of the index finger metacarpophalangeal joint. J. Biomech. 2012, 45, 2531–2538. [Google Scholar] [CrossRef]
- Verstraten, T.; Beckerle, P.; Furnémont, R.; Mathijssen, G.; Vanderborght, B.; Lefeber, D. Series and Parallel Elastic Actuation: Impact of natural dynamics on power and energy consumption. Mech. Mach. Theory 2016, 102, 232–246. [Google Scholar] [CrossRef]
- Beckerle, P.; Verstraten, T.; Mathijssen, G.; Furnémont, R.; Vanderborght, B.; Lefeber, D. Series and Parallel Elastic Actuation: Influence of Operating Positions on Design and Control. IEEE/ASME Trans. Mechatron. 2017, 22, 521–529. [Google Scholar] [CrossRef]
- Yesilevskiy, Y.; Weitao, X.; Remy, C.D. A comparison of series and parallel elasticity in a monoped hopper. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1036–1041. [Google Scholar]
- Yesilevskiy, Y.; Gan, Z.; Remy, C.D. Energy-optimal hopping in parallel and series elastic one-dimensional monopeds. J. Mech. Robot. 2018, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jin, H.; Iida, F.; Zhao, J. A design concept of parallel elasticity extracted from biological muscles for engineered actuators. Bioinspir. Biomim. 2016, 11, 056009. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Westervelt, E.R.; Schmiedeler, J.P.; Bockbrader, R.A. Design and control of a planar bipedal robot ERNIE with parallel knee compliance. Auton. Robot. 2008, 25, 317. [Google Scholar] [CrossRef]
- Yang, T.; Westervelt, E.R.; Schmiedeler, J.P. Using Parallel Joint Compliance to Reduce the Cost of Walking in a Planar Bipedal Robot. In Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition, Washington, DC, USA, 11–15 November 2007; pp. 1225–1231. [Google Scholar] [CrossRef]
- Yang, T. Control of Aperiodic Walking and the Energetic Effects of Parallel Joint Compliance of Planar Bipedal Robots. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2007. [Google Scholar]
- Günther, F.; Giardina, F.; Iida, F. Self-stable one-legged hopping using a curved foot. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 5133–5138. [Google Scholar]
- Hunt, J.; Giardina, F.; Rosendo, A.; Iida, F. Improving Efficiency for an Open-Loop-Controlled Locomotion With a Pulsed Actuation. IEEE/ASME Trans. Mechatron. 2016, 21, 1581–1591. [Google Scholar] [CrossRef]
- Guenther, F.; Iida, F. Energy-Efficient Monopod Running With a Large Payload Based on Open-Loop Parallel Elastic Actuation. IEEE Trans. Robot. 2017, 33, 102–113. [Google Scholar] [CrossRef]
- Günther, F.; Shu, Y.; Iida, F. Parallel elastic actuation for efficient large payload locomotion. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 823–828. [Google Scholar]
- Plooij, M.; Wolfslag, W.; Wisse, M. Clutched Elastic Actuators. IEEE/ASME Trans. Mechatron. 2017, 22, 739–750. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. Harnessing Compliance in the Design and Control of Running Robots. Ph.D. Thesis, University of Delaware, Newark, DE, USA, 2017. [Google Scholar]
- Liu, X.; Rossi, A.; Poulakakis, I. A Switchable Parallel Elastic Actuator and Its Application to Leg Design for Running Robots. IEEE/ASME Trans. Mechatron. 2018, 23, 2681–2692. [Google Scholar] [CrossRef]
- Xin, L.; Rossi, A.; Poulakakis, I. SPEAR: A monopedal robot with Switchable Parallel Elastic actuation. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5142–5147. [Google Scholar]
- Mazumdar, A.; Spencer, S.J.; Hobart, C.; Salton, J.; Quigley, M.; Wu, T.; Bertrand, S.; Pratt, J.; Buerger, S.P. Parallel Elastic Elements Improve Energy Efficiency on the STEPPR Bipedal Walking Robot. IEEE/ASME Trans. Mechatron. 2017, 22, 898–908. [Google Scholar] [CrossRef]
- Mazumdar, A.; Spencer, S.; Salton, J.; Hobart, C.; Love, J.; Dullea, K.; Kuehl, M.; Blada, T.; Quigley, M.; Smith, J.; et al. Using parallel stiffness to achieve improved locomotive efficiency with the Sandia STEPPR robot. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 835–841. [Google Scholar]
- Morales-Orcajo, E.; Becerro de Bengoa Vallejo, R.; Losa Iglesias, M.; Bayod, J. Structural and material properties of human foot tendons. Clin. Biomech. 2016, 37, 1–6. [Google Scholar] [CrossRef]
- Koh, D.; Lim, J.; Chen, J.Y.; Singh, I.R.; Koo, K. Flexor hallucis longus transfer versus turndown flaps augmented with flexor hallucis longus transfer in the repair of chronic Achilles tendon rupture. Foot Ankle Surg. 2019, 25, 221–225. [Google Scholar] [CrossRef]
- Seok, S.; Wang, A.; Chuah, M.Y.; Hyun, D.J.; Lee, J.; Otten, D.M.; Lang, J.H.; Kim, S. Design Principles for Energy-Efficient Legged Locomotion and Implementation on the MIT Cheetah Robot. IEEE/ASME Trans. Mechatron. 2015, 20, 1117–1129. [Google Scholar] [CrossRef] [Green Version]
- Raibert, M.; Blankespoor, K.; Nelson, G.; Playter, R. BigDog, the Rough-Terrain Quadruped Robot. IFAC Proc. Vol. 2008, 41, 10822–10825. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.P.; Saunders, A.; Moreira, C.; Rizzi, A.A.; Raibert, M. The LittleDog robot. Int. J. Robot. Res. 2011, 30, 145–149. [Google Scholar] [CrossRef]
- Roennau, A.; Heppner, G.; Nowicki, M.; Dillmann, R. LAURON V: A versatile six-legged walking robot with advanced maneuverability. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 8–11 July 2014; pp. 82–87. [Google Scholar]
- Chen, J.; Liu, Y.; Zhao, J.; Zhang, H.; Jin, H. Biomimetic Design and Optimal Swing of a Hexapod Robot Leg. J. Bionic Eng. 2014, 11, 26–35. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Zhao, J.; Chen, J.; Yan, J. Development of a bionic hexapod robot for walking on unstructured terrain. J. Bionic Eng. 2014, 11, 176–187. [Google Scholar] [CrossRef]
- Semini, C.; Tsagarakis, N.G.; Guglielmino, E.; Focchi, M.; Cannella, F.; Caldwell, D.G. Design of HyQ–A hydraulically and electrically actuated quadruped robot. J. Syst. Control Eng. 2011, 225, 831–849. [Google Scholar] [CrossRef]
- Focchi, M. Strategies to Improve the Impedance Control Performance of a Quadruped Robot. Ph. D Thesis, Istituto Italiano di Tecnologia, Genoa, Italy, 2013. [Google Scholar]
- Koco, E.; Mirkovic, D.; Kovačić, Z. Hybrid Compliance Control for Locomotion of Electrically Actuated Quadruped Robot. J. Intell. Robot. Syst. 2018, 94, 537–563. [Google Scholar] [CrossRef]
- Koco, E.; Mutka, A.; Kovacic, Z. New Variable Passive-Compliant Element Design for Quadruped Adaptation to Stiffness-Varying Terrain. Int. J. Adv. Robot. Syst. 2016, 13, 90. [Google Scholar] [CrossRef] [Green Version]
- Ananthanarayanan, A.; Azadi, M.; Kim, S. Towards a bio-inspired leg design for high-speed running. Bioinspir. Biomim. 2012, 7, 046005. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.-S.; Kim, S. Design of a cat-inspired robotic leg for fast running. Adv. Robot. 2014, 28, 1587–1598. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Park, J.; Choi, I.; Lim, J.W.; Kim, S.; Lee, D.G. Carbon/epoxy composite foot structure for biped robots. Compos. Struct. 2016, 140, 344–350. [Google Scholar] [CrossRef]
- Shu Manosalvas, R.O. Design and Analysis of a Biped Leg to Survive High-Impact Falls. Ph.D. Thesis, Pittsburgh/Unviersidad Carnegie Mellon, Pittsburgh, PA, USA, 2016. [Google Scholar]
- Radkhah, K.; Maufroy, C.; Maus, M.; Scholz, D.; Seyfarth, A.; Von Stryk, O. Concept and design of the biobiped1 robot for human-like walking and running. Int. J. Hum. Robot. 2011, 8, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Kurowski, S.; Stryk, O.V. A systematic approach to the design of embodiment with application to bio-inspired compliant legged robots. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 3771–3778. [Google Scholar]
- Karssen, J.G.D. Robotic Bipedal Running: Increasing Disturbance Rejection. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2013. [Google Scholar]
- Spröwitz, A.; Tuleu, A.; Vespignani, M.; Ajallooeian, M.; Badri, E.; Ijspeert, A.J. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 2013, 32, 932–950. [Google Scholar] [CrossRef] [Green Version]
- Sprowitz, A.T.; Tuleu, A.; Ijspeert, A.J. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. Front. Comput. Neurosci. 2014, 8, 27. [Google Scholar] [PubMed] [Green Version]
- Hoffmann, M.; Simanek, J. The Merits of Passive Compliant Joints in Legged Locomotion: Fast Learning, Superior Energy Efficiency and Versatile Sensing in a Quadruped Robot. J. Bionic Eng. 2017, 14, 1–14. [Google Scholar] [CrossRef]
- Radkhah, K.; von Stryk, O. A study of the passive rebound behavior of bipedal robots with stiff and different types of elastic actuation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 5095–5102. [Google Scholar]
- Iida, F.; Gómez, G.; Pfeifer, R. Exploiting body dynamics for controlling a running quadruped robot. In Proceedings of the 2005 IEEE International Conference on Advanced Robotics, Seattle, WA, USA, 18–20 July 2005; pp. 229–235. [Google Scholar]
- Magid, A.; Law, D. Myofibrils bear most of the resting tension in frog skeletal muscle. Science 1985, 230, 1280–1282. [Google Scholar] [CrossRef] [PubMed]
- Granzier, H.L.; Pollack, G.H. The descending limb of the force-sarcomere length relation of the frog revisited. J. Physiol. 1990, 421, 595–615. [Google Scholar] [CrossRef] [PubMed]
- Winters, T.M.; Takahashi, M.; Lieber, R.L.; Ward, S.R. Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles. J. Biomech. 2011, 44, 109–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollapudi, S.K.; Lin, D.C. Experimental determination of sarcomere force–length relationship in type-I human skeletal muscle fibers. J. Biomech. 2009, 42, 2011–2016. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar]
- Maganaris, C.N.; Narici, M.V.; Maffulli, N. Biomechanics of the Achilles tendon. Disabil. Rehabil. 2008, 30, 1542–1547. [Google Scholar] [CrossRef]
- Fletcher, J.R.; MacIntosh, B.R. Achilles tendon strain energy in distance running: Consider the muscle energy cost. J. Appl. Physiol. 2015, 118, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Kjaer, M.; Langberg, H.; Miller, B.; Boushel, R.; Crameri, R.; Koskinen, S.; Heinemeier, K.; Olesen, J.; Dossing, S.; Hansen, M.; et al. Metabolic activity and collagen turnover in human tendon in response to physical activity. J. Musculoskelet. Neuronal Interact 2005, 5, 41–52. [Google Scholar]
- Hannukainen, J.; Kalliokoski, K.K.; Nuutila, P.; Fujimoto, T.; Kemppainen, J.; Viljanen, T.; Laaksonen, M.S.; Parkkola, R.; Knuuti, J.; Kjær, M. In Vivo Measurements of Glucose Uptake in Human Achilles Tendon During Different Exercise Intensities. Int. J. Sports Med. 2005, 26, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; Karamanidis, K.; Morey-Klapsing, G.; De Monte, G.; Stafilidis, S. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J. Biomech. 2007, 40, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, C.I.; Marsh, R.L. Effects of long-term exercise on the biomechanical properties of the Achilles tendon of guinea fowl. J. Appl. Physiol. 2001, 90, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.W.; Chestnutt, J.E.; Rizzi, A.A. The Actuator With Mechanically Adjustable Series Compliance. IEEE Trans. Robot. 2010, 26, 597–606. [Google Scholar] [CrossRef]
- Ahmad Sharbafi, M.; Shin, H.; Zhao, G.; Hosoda, K.; Seyfarth, A. Electric-Pneumatic Actuator: A New Muscle for Locomotion. Actuators 2017, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, Y.; Chen, Y.; Majidi, C.; Iida, F.; Askounis, E.; Pei, Q. Controllable and reversible tuning of material rigidity for robot applications. Mater. Today 2018, 21, 563–576. [Google Scholar] [CrossRef]
- Ma, M.; Guo, L.; Anderson, D.G.; Langer, R. Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients. Science 2013, 339, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.A.; Blair, R. Leg stiffness and damping factors as a function of running speed. Sports Eng. 2002, 5, 129–139. [Google Scholar] [CrossRef]
- Wilson, A.M.; McGuigan, M.P.; Su, A.; van den Bogert, A.J. Horses damp the spring in their step. Nature 2001, 414, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Kostamo, E.; Focchi, M.; Guglielmino, E.; Kostamo, J.; Semini, C.; Buchli, J.; Pietola, M.; Caldwell, D. Magnetorheologically Damped Compliant Foot for Legged Robotic Application. J. Mech. Des. 2013, 136. [Google Scholar] [CrossRef]
- Garcia, E.; Arevalo, J.C.; Muñoz, G.; Gonzalez-de-Santos, P.J.R.; Systems, A. Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion. Robot. Auton. Syst. 2011, 59, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Maufroy, C.; Maus, H.M.; Seyfarth, A. Simplified control of upright walking by exploring asymmetric gaits induced by leg damping. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Phuket, Thailand, 7–11 December 2011; pp. 491–496. [Google Scholar]
- Riese, S.; Seyfarth, A. Stance leg control: Variation of leg parameters supports stable hopping. Bioinspir. Biomim. 2011, 7, 016006. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.H.; Seipel, J.E. A fundamental mechanism of legged locomotion with hip torque and leg damping. Bioinspir. Biomim. 2012, 7, 046010. [Google Scholar] [CrossRef] [PubMed]
- Abraham, I.; Shen, Z.; Seipel, J. A Nonlinear Leg Damping Model for the Prediction of Running Forces and Stability. J. Comput. Nonlinear Dyn. 2015, 10, 051008. [Google Scholar] [CrossRef]
- Nigg, B.M.; Liu, W. The effect of muscle stiffness and damping on simulated impact force peaks during running. J. Biomech. 1999, 32, 849–856. [Google Scholar] [CrossRef]
Robot | References | Locomotion Ways | Leg Number | DOF Per Leg | Leg Length (mm) | Leg Equivalent Massa (kg) | Joints with Compliance |
---|---|---|---|---|---|---|---|
Joint Series Compliance | |||||||
Spring Flamingo | [37,38] | Walking | 2 | 3 | 1000 | 7 | Hip, knee, ankle |
StarlETH | [39,40,41,42] | Versatile locomotion | 4 | 3 | 498 | 5.75 | Hip, knee |
Anymal | [43,44,45,46] | Versatile locomotion | 4 | 3 | 500 | 7.5 | Hip, knee |
Chobino1D | [47,48] | Hopping | 1 | 2 | 400 | 0.7 | Knee |
COMAN | [50,51,52] | Walking | 2 | 6 (3 joints) | 537 | 17 | Hip, knee, ankle |
Joint Parallel Compliance | |||||||
HECTOR | [53,54,55] | Walking | 6 | 3 | 610 | 2.17 | Hip, knee, ankle |
ERNIE | [62,63,64] | Walking | 2 | 2 | 720 | 9.3 | Knee |
CHIARO | [65,66,67] | Hopping | 1 | 1 | 360 | 0.72 | Knee |
ETH Cargo | [68] | Hopping | 1 | 1 | 623 | 28.6 | Hip |
SPEAR | [70,71,72] | Hopping | 1 | 2 | 647 | 8.07 | Knee |
STEPPR | [73,74] | Walking | 2 | 6 (3 joints) | -- | 46.5 | Hip, ankle |
Realization Method | Representative Robot | Compliance Category | Compliance Profile | Additional Damping | Performance Characterization (in Percentage Terms) |
---|---|---|---|---|---|
Extension spring-based | BioBiped1 | I | Linear | No | ~33% reduction in energy loss ~35% reduction in ground impact |
ERNIE | II | Linear | No | – | |
SPEAR | II | Linear | No | 64% of energy recovery | |
Chobino1D | I | Nonlinear | No | ~32% reduction in energy ~60% reduction in peak power | |
Compression spring-based | StarlETH leg | I | Linear | Yes | 64% of energy recovery 400% amplification in peak power |
COMAN | I | Nonlinear | No | – | |
HyQ | III | Linear | Yes | 60% reduction in ground impact | |
Customized compliant components | HECTOR | I | Nonlinear | No | – |
STEPPR | II | Linear | No | ~60% reduction in energy (hip) ~43% reduction in energy (ankle) | |
Phides | I + II | Nonlinear | No | 26% reduction in peak power | |
Raptor | III | – | No | 40% reduction in impact load 23.7% improvement in speed | |
MIT cheetah leg | III | – | No | 59% reduction in ground impact |
Robot | Compliance Category | Compliance Nonlinearity |
---|---|---|
COMAN | I | Softening |
HECTOR | I | Stiffening |
Chobino1D | I | Non-monotonic |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liang, Z.; Zhu, Y.; Liu, C.; Zhang, L.; Hao, L.; Zhao, J. Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms. Sensors 2019, 19, 5351. https://doi.org/10.3390/s19245351
Chen J, Liang Z, Zhu Y, Liu C, Zhang L, Hao L, Zhao J. Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms. Sensors. 2019; 19(24):5351. https://doi.org/10.3390/s19245351
Chicago/Turabian StyleChen, Jie, Zhongchao Liang, Yanhe Zhu, Chong Liu, Lei Zhang, Lina Hao, and Jie Zhao. 2019. "Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms" Sensors 19, no. 24: 5351. https://doi.org/10.3390/s19245351
APA StyleChen, J., Liang, Z., Zhu, Y., Liu, C., Zhang, L., Hao, L., & Zhao, J. (2019). Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms. Sensors, 19(24), 5351. https://doi.org/10.3390/s19245351