Individual Tree Crown Delineation Using Multispectral LiDAR Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Used
2.2. Methodology
2.2.1. Individual Treetop Detection
2.2.2. Segmentation of Crowns
Overview
The Contextual Merging Criterion based on Neutrosophic Logic
Constraint based on Crown Shape
2.3. Accuracy Assessment
3. Results and Analysis
3.1. Detected Tree Tops
3.2. Delineated Individual Tree Crowns
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwak, D.A.; Lee, W.K.; Lee, J.H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. J. For. Res. 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Pouliot, D.A.; King, D.J.; Bell, F.W.; Pitt, D.G. Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 2002, 82, 322–334. [Google Scholar] [CrossRef]
- Li, W.; Guo, Q.; Jakubowski, K.; Marek, M.; Kelly, M. A New Method for Segmenting Individual Trees from the Lidar Point Cloud. Photogramm. Eng. Remote Sens. 2012, 78, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Gougeon, F.A.; Donald, G. L. The individual tree crown approach applied to Ikonos images of a coniferous plantation area. Photogramm. Eng. Remote Sens. 2005, 72, 1287–1297. [Google Scholar] [CrossRef]
- Leckie, D.G.; Gougeon, F.A.; Walsworth, N.; Paradine, D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens. Environ. 2003, 85, 355–369. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Kaartinen, H.; Maltamo, M. Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens. Environ. 2004, 90, 451–462. [Google Scholar] [CrossRef]
- Koch, B., U.; Heyder, W.; Weinacker, H. Detection of individual tree crowns in airborne LiDAR data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, D.A.; King, D.J.; Pitt, D.G. Development and evaluation of an automated tree detection-delineation algorithm for monitoring regenerating coniferous forests. Can. J. For. Res. 2005, 35, 2332–2345. [Google Scholar] [CrossRef] [Green Version]
- Erikson, M. Species classification of individually segmented tree crowns in high-resolution aerial images using radiometric and morphologic image measures. Remote Sen. Environ. 2004, 91, 469–477. [Google Scholar] [CrossRef]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Hu, B.; Li, J.; Noland, T. Automated delineation of individual tree crowns from LiDAR data by multi-scale analysis and segmentation. Photogramm. Eng. Remote Sens. 2012, 78, 1275–1284. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Jing, L.; Judah, A. Improving the efficiency and accuracy of individual tree crown delineation from high- 3184 density LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 144–155. [Google Scholar] [CrossRef]
- Breidenbach, J.; Næsset, E.; Lien, V.; Gobakken, T.; Solberg, S. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens. Environ. 2010, 114, 911–924. [Google Scholar] [CrossRef]
- Zhen, Z.; Quackenbush, L.J.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation-Evolution of LiDAR Data. Remote Sens. 2016, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Coomes, D.; Schonlieb, C.B.; Cai, X.; Lellmann, J.; Dalponte, M.; Morecroft, M. A graph cut approach to 3D tree delineation, using integrated airborne LiDAR and hyperspectral imagery. arXiv 2017, arXiv:1701.06715, 2017. [Google Scholar]
- Morsy, S.; Shaker, A.; El-Rabbany, A.; LaRocque, P.E. Airborne multispectral LiDAR data for land-cover classification and land/water mapping using different spectral indexes. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Diaz, F.J.C.; Carter, W.E.; Glennie, C.; Shrestha, R.L.; Pan, Z.; Ekhtari, N.; Singhania, A.; Hauser, D.; Sartori, M. Capability Assessment and Performance Metrics for the Titan Multispectral Mapping Lidar. Remote Sens. 2016, 8, 936. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Zhao, G.; Li, J.; Yang, Y.; and Fang, Y. 3D land cover classification based on multispectral LiDAR point clouds, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-B1, 741–747. [Google Scholar]
- Dai, W.; Yang, B.; Dong, Z.; and Shaker, A. A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 144, 400–411. [Google Scholar] [CrossRef]
- Wang, L.; Peng, G.; Gregory, S. B. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery. Photogramm. Eng. Remote Sens. 2004, 70, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. Individual Tree Crown Delineation Using Combined LiDAR Data and Optical Imagery. Master’s Thesis, York University, Toronto, ON, Canada, 2009. [Google Scholar]
- Hyyppä, J.; Mielonen, T.; Hyyppä, H.; Maltamo, M.; Yu, X.; Honkavaara, E.; Kaartinen, H. Using individual tree crown approach for forest volume extraction with aerial images and laser point clouds. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (3/W19), Enschede, The Netherlands, 12–14 September 2005; pp. 144–149. [Google Scholar]
- Baatz, M.; Schäp, M. Multiresolution Segmentation an Optimization Approach for High Quality Multi-Scale Image Segmentation. In Angewandte Geographische Informations-Verarbeitung XII; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Wichmann Verlag: Karlsruhe, Germany, 2000; pp. 12–23. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutroosphic Set, Neutrosophic Probability and Statistics; American Research Press: Rehoboth, MA, USA, 1999. Available online: http://www.gallup.unm.edu/ ~smarandache/eBook-Neutrosophics2.pdf (accessed on 8 December 2019).
- Shan, J.; Cheng, H.D.; Wang, Y. A completely automatic segmentation method for breast ultrasound images using region growing. In Proceedings of the 11th Joint Conference on Information Sciences; Atlantics press: Paris, France, 2008. [Google Scholar] [CrossRef] [Green Version]
- Naveed, F.; Hu, B. Individual Tree Crown Delineation Using Multi-Wavelength Titan LiDAR Data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-3/W3, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning: Principles and Processing; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimatesfrom 3-D tree height models produced by laser scanners. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar]
- Pitkänen, J.; Maltamo, M.; Hyyppä, J.; Yu, X.; Theis, M.; Koch, B.; Spiecker, H.; Weinacker, H. Adaptive methods for individual tree detection on airborne laser based canopy height model. In Proceedings of the ISPRS Working Group VIII/2: “Laser-Scanners for Forest and Landscape Assessment”, University of Freiburg, Freiburg, Germany, 3–6 October 2004; pp. 187–191. [Google Scholar]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. Int. Arch. Photogramm. Remote Sens. 2000, 33, 111–118. [Google Scholar]
- Morsdorf, F.; Meier, E.; Koötz, B.; Itten, K.I.; Dobbertin, M.; Allgoöwer, B. LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens. Environ. 2004, 92, 353–362. [Google Scholar] [CrossRef]
- Heinzel, J.; Koch, B. Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 101–110. [Google Scholar] [CrossRef]
- Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [Google Scholar] [CrossRef]
- Zhen, Z.; Quackenbush, L.J.; Stehman, S.V.; Zhang, L. Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data. Int. J. Remote Sens. 2015, 36, 1965–1993. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, Y.; Zhen, Z.; Quan, Y. A region-based hierarchical cross-section analysis for individual tree crown delineation using ALS data. Remote Sens. 2017, 9, 1084. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.; Hamrouni, A.; El Mokhtari, S.; Morel, J.; Bock, J.; Renaud, J.-P.; Bouvier, M.; Durrieu, S. PTrees: A point-based approach to forest tree extraction from liar data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 98–108. [Google Scholar] [CrossRef]
- Rabadán, M.-Á.; Peña, J.; Adán, F. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. Forest Syst. 2016, 25, e046. [Google Scholar] [CrossRef] [Green Version]
Matched | Partially Matched | Omission | Producer’s Accuracy 1 | Producer’s Accuracy 2 | User’s Accuracy 1 | User’s Accuracy 2 | |
---|---|---|---|---|---|---|---|
Reference | 419 | 155 | 144 | 0.58 | 0.80 | - | - |
Segmentation | 487 | 55 | 50 | - | - | 0.84 | 0.93 |
Method | Matched | Partially Matched | Omitted | Producer’s Accuracy 1 | Producer’s Accuracy 2 |
---|---|---|---|---|---|
Neutrosophic method with intensities & CHM | 419 | 155 | 144 | 0.58 | 0.80 |
Neutrosophic method with CHM only | 407 | 109 | 202 | 0.57 | 0.72 |
Neutrosophic method with intensities only | 404 | 89 | 225 | 0.56 | 0.69 |
MCW with CHM only | 323 | 177 | 218 | 0.45 | 0.70 |
MCW with intensities only | 269 | 143 | 306 | 0.37 | 0.57 |
MCW with CHM and intensities | 327 | 164 | 227 | 0.46 | 0.68 |
Method | Matched | Partially Matched | Omitted | Producer’s Accuracy 1 | Producer’s Accuracy 2 |
---|---|---|---|---|---|
Neutrosophic method with intensities & CHM | 635 | 16 | 67 | 0.88 | 0.91 |
Neutrosophic method with CHM only | 628 | 14 | 76 | 0.87 | 0.89 |
Neutrosophic method with intensities only | 608 | 17 | 93 | 0.85 | 0.87 |
MCW with CHM only | 596 | 54 | 68 | 0.83 | 0.91 |
MCW with intensities only | 604 | 46 | 68 | 0.84 | 0.91 |
MCW with CHM and intensities | 605 | 46 | 67 | 0.84 | 0.91 |
Scale Sizes | Matched | Partially Matched | Omitted | Producer’s Accuracy 1 | Producer’s Accuracy 2 |
---|---|---|---|---|---|
7, 13, 21 | 419 | 155 | 144 | 0.58 | 0.80 |
7, 13, 29 | 415 | 142 | 155 | 0.58 | 0.78 |
7, 13, 21, 29 | 421 | 143 | 160 | 0.59 | 0.78 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveed, F.; Hu, B.; Wang, J.; Hall, G.B. Individual Tree Crown Delineation Using Multispectral LiDAR Data. Sensors 2019, 19, 5421. https://doi.org/10.3390/s19245421
Naveed F, Hu B, Wang J, Hall GB. Individual Tree Crown Delineation Using Multispectral LiDAR Data. Sensors. 2019; 19(24):5421. https://doi.org/10.3390/s19245421
Chicago/Turabian StyleNaveed, Faizaan, Baoxin Hu, Jianguo Wang, and G. Brent Hall. 2019. "Individual Tree Crown Delineation Using Multispectral LiDAR Data" Sensors 19, no. 24: 5421. https://doi.org/10.3390/s19245421
APA StyleNaveed, F., Hu, B., Wang, J., & Hall, G. B. (2019). Individual Tree Crown Delineation Using Multispectral LiDAR Data. Sensors, 19(24), 5421. https://doi.org/10.3390/s19245421