Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete
Abstract
:1. Introduction
2. Experimental Setup and Methodology
2.1. Microwave Theory and Application
- Dielectric constant (ε′) is defined as a quantity measuring the ability of a material to store electrical energy in an electric field. The changing moisture content of concrete will vary the dielectric constant due to the polarization of water inside the concrete sample.
- Dielectric loss (ε″) is defined as loss of electromagnetic energy propagating inside the concrete structure due to the rotation and oscillation between the water molecules thus resulting in friction.
2.2. Microstrip Patch Antenna at 2.45 GHz Frequency
Design of Microstrip Patch Antenna
2.3. Materials Preparation and Properties
2.3.1. Fabrication of Printed Circuit Board (Patch Antenna)
2.3.2. Concrete Structure
2.3.3. Water Content
2.4. Experimental Setup
2.5. Data Acquisition
2.6. Numerical Simulation
3. Results and Discussions
3.1. Moisture Content in MS 26-1-8:2010 Concrete
3.2. Moisture Content in Europe EN 206-1-2013 Concrete in 2.43 GHz and 4.16 GHz
3.3. Signal Spectrum for MS 26-1-8:2010 Concrete and Europe EN 206-1-2013 Concrete
3.4. Simulation Results
4. Conclusions
- (1)
- Designed of 2.45 GHz patch antenna is well validated between experiment and simulation.
- (2)
- Self-printed 2.45 GHz patch antenna successfully detected moisture content in two concrete blocks that were made based on two different standards (Europe EN 206-1-2013 and Malaysia MS 26-1-8:2010).
- (3)
- Detection of moisture content in Malaysia MS 26-1-8:2010 and Europe EN 206-1-2013 concrete blocks is well correlated at linear regression of 0.9228 and 0.9587 respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Annamdas, V.G.M.; Bhalla, S.; Soh, C.K. Applications of structural health monitoring technology in Asia. Struct. Health Monit. 2017, 16, 324–346. [Google Scholar] [CrossRef]
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete—Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- Soares, N.; Bastos, J.; Dias Pereira, L.; Soares, A.; Amaral, A.R.; Asadi, E.; Rodrigues, E.; Lamas, F.B.; Monteiro, H.; Lopes, M.A.R.; et al. A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment. Renew. Sustain. Energy Rev. 2017, 77, 845–860. [Google Scholar] [CrossRef]
- Akpabot, A.I.; Ede, A.; Olofinnade, O.; Bamigboye, G. Predicting Buildings Collapse Due to Seismic Action in Lagos State. Int. J. Eng. Res. Afr. 2018, 37, 91–102. [Google Scholar] [CrossRef]
- Güemes, A.; Fernández-López, A.; Díaz-Maroto, P.F.; Lozano, A.; Sierra-Perez, J. Structural Health Monitoring in Composite Structures by Fiber-Optic Sensors. Sensors 2018, 18, 1094. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chan, T.H.T.; Ko, J.M. Fatigue analysis and life prediction of bridges with structural health monitoring data—Part I: Methodology and strategy. Int. J. Fatigue 2001, 23, 45–53. [Google Scholar] [CrossRef]
- Wu, Z.; Wong, H.; Buenfeld, N. Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. Cem. Concr. Res. 2017, 98, 136–154. [Google Scholar] [CrossRef]
- Ranjith, P.; Jasinge, D.; Song, J.Y.; Choi, S.K. A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: Use of acoustic emission. Mech. Mater. 2008, 40, 453–469. [Google Scholar] [CrossRef]
- Shoukry, S.N.; William, G.W.; Downie, B.; Riad, M.Y. Effect of moisture and temperature on the mechanical properties of concrete. Constr. Build. Mater. 2011, 25, 688–696. [Google Scholar] [CrossRef]
- Bungey, J.H.; Grantham, M.G. Testing of Concrete in Structures; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Stanish, K.; Hooton, R.D; Thomas, M. Testing the Chloride Penetration Resistance Concrete: A Literature Review; Department of Civil Engineering, University of Toronto: Toronto, ON, Canada, 2000. [Google Scholar]
- McCann, D.; Forde, M. Review of NDT methods in the assessment of concrete and masonry structures. NDT & E Int. 2001, 34, 71–84. [Google Scholar]
- Subbarao, G.V.; Mulaveesala, R. Quadratic frequency modulated thermal wave imaging for non-destructive testing. Prog. Electromagn. Res. 2012, 26, 11–22. [Google Scholar] [CrossRef]
- Hampel, U.; Bieberle, A.; Hoppe, D.; Kronenberg, J. High resolution gamma ray tomography scanner for flow measurement and non-destructive testing applications. Rev. Sci. Instrum. 2007, 78, 103704. [Google Scholar] [CrossRef] [PubMed]
- Green, R.E., Jr. Non-contact ultrasonic techniques. Ultrasonics 2004, 42, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Hanke, R.; Fuchs, T.; Uhlmann, N. X-ray based methods for non-destructive testing and material characterization. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 591, 14–18. [Google Scholar] [CrossRef]
- Bisschop, J.; Van Mier, J. How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy? Cem. Concr. Res. 2002, 32, 279–287. [Google Scholar] [CrossRef]
- Maierhofer, C.; Reinhardt, H.W.; Dobmann, G. Non-Destructive Evaluation of Reinforced Concrete Structures: Non-Destructive Testing Methods; Elsevier: New York, NY, USA, 2010. [Google Scholar]
- Farrar, C.R.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Qing, X.; Kumar, A.; Zhang, C.; Gonzalez, I.F.; Guo, G.; Chang, F. A hybrid piezoelectric/fiber optic diagnostic system for structural health monitoring. Smart Mater. Struct. 2005, 14, S98. [Google Scholar] [CrossRef]
- Li, H.-N.; Li, D.-S; Song, G.-B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657. [Google Scholar] [CrossRef]
- Hamdan, A.; Sultan, M.; Mustapha, F. Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites, and Hybrid Composite. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: Sawston, UK, 2019; pp. 227–242. [Google Scholar]
- Chang, P.C.; Flatau, A.; Liu, S. Health monitoring of civil infrastructure. Struct. Health Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Talakokula, V.; Bhalla, S.; Gupta, A. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique. Mech. Syst. Signal Process. 2018, 99, 129–141. [Google Scholar] [CrossRef]
- Qin, L.; Li, Z. Monitoring of cement hydration using embedded piezoelectric transducers. Smart Mater. Struct. 2008, 17, 055005. [Google Scholar] [CrossRef]
- Providakis, C.; Liarakos, E.; Kampianakis, E. Nondestructive wireless monitoring of early-age concrete strength gain using an innovative electromechanical impedance sensing system. Smart Mater. Res. 2013, 932568. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Díaz, C.R.; Marques, C.; Pontes, M.J.; Frizera, A. Multiplexing technique for quasi-distributed sensors arrays in polymer optical fiber intensity variation-based sensors. Opt. Laser Technol. 2019, 111, 81–88. [Google Scholar] [CrossRef]
- Alokita, S. Recent advances and trends in structural health monitoring. In Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Woodhead Publishing: Sawston, UK, 2019; pp. 53–73. [Google Scholar]
- Zhou, Z.; Wang, Z.; Shao, L. Fiber-reinforced polymer-packaged optical fiber Bragg grating strain sensors for infrastructures under harsh environment. J. Sens. 2016, 3953750. [Google Scholar] [CrossRef]
- Yao, J.; Tjuatja, S.; Huang, H. Real-time vibratory strain sensing using passive wireless antenna sensor. IEEE Sens. J. 2015, 15, 4338–4345. [Google Scholar] [CrossRef]
- Sanders, J.W.; Yao, J.; Huang, H. Microstrip patch antenna temperature sensor. IEEE Sens. J. 2015, 15, 5312–5319. [Google Scholar] [CrossRef]
- Cheng, H.; Ebadi, S.; Ren, X.; Gong, X. Wireless passive high-temperature sensor based on multifunctional reflective patch antenna up to 1050 degrees centigrade. Sens. Actuators A Phys. 2015, 222, 204–211. [Google Scholar] [CrossRef]
- Savin, A.; Steigmann, R.; Bruma, A.; Šturm, R. An electromagnetic sensor with a metamaterial lens for nondestructive evaluation of composite materials. Sensors 2015, 15, 15903–15920. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.H.; Shaw, A.; Ateeq, M.; AL-shamma’a, A.; Wylie, A.; Kazi, S.N.; Chew, B.T.; Kot, P. Design and implementation of a non-invasive real-time microwave sensor for assessing water hardness in heat exchangers. J. Electromagn. Waves Appl. 2018, 32, 797–811. [Google Scholar] [CrossRef]
- Kot, P.; Shaw, A.; Riley, M.; Ali, A.S.; Cotgrave, A. The Feasibility of Using Electromagnetic Waves in Determining Membrane Failure Through Concrete. Int. J. Civ. Eng. 2017, 15, 355–362. [Google Scholar] [CrossRef]
- Kot, P.; Shaw, A.; Riley, M.; Ali, A.S. The application of electromagnetic waves in monitoring water infiltration on concrete flat roof: The case of Malaysia. Constr. Build. Mater. 2016, 122, 435–445. [Google Scholar] [CrossRef]
Copper (Conductor & Ground) | FR-4 (Dielectric) | |
---|---|---|
Thickness | 0.03 mm | 1.6 mm |
Dielectric constant, ε | 1 | 4.7 |
Electrical Conductivity | 5.96 × 107 (S/m) | 0 |
Loss tangent, tan б | 0 | 0.035 |
Parameters | UK Standards (EN 206-1-2013) | Malaysian Standards (MS 26-1-8:2010) |
---|---|---|
Type of cement | CEM II | CEM II |
Cement | 350 | 393 |
Sand 0.25–2 mm | 525 | 589 |
Gravel 4–8 mm | 1050 | 1178 |
Water/cement ratio | 0.7 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, K.H.; Kot, P.; Muradov, M.; Shaw, A.; Hashim, K.; Gkantou, M.; Al-Shamma’a, A. Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete. Sensors 2019, 19, 547. https://doi.org/10.3390/s19030547
Teng KH, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M, Al-Shamma’a A. Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete. Sensors. 2019; 19(3):547. https://doi.org/10.3390/s19030547
Chicago/Turabian StyleTeng, Kah Hou, Patryk Kot, Magomed Muradov, Andy Shaw, Khalid Hashim, Michaela Gkantou, and Ahmed Al-Shamma’a. 2019. "Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete" Sensors 19, no. 3: 547. https://doi.org/10.3390/s19030547
APA StyleTeng, K. H., Kot, P., Muradov, M., Shaw, A., Hashim, K., Gkantou, M., & Al-Shamma’a, A. (2019). Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete. Sensors, 19(3), 547. https://doi.org/10.3390/s19030547