Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch
Abstract
:1. Introduction
2. Switchable Bandpass/Bandstop Filter Design
3. Fabrication and Measurement
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Psychogiou, D.; Peroulis, D.; Gómez-García, R. Fully-Reconfigurable bandpass/bandstop filters and their coupling-Matrix representation. IEEE Microw. Wirel. Components Lett. 2016, 26, 22–24. [Google Scholar] [CrossRef]
- Karim, M.F.; Guo, Y.X.; Chen, Z.N.; Ong, L.C. Miniaturized reconfigurable filter using PIN diode for UWB applications. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 15–20 June 2008; pp. 1031–1034. [Google Scholar]
- Rebeiz, G.M.; Reines, I.C.; El-Tanani, M.A.; Grichener, A.; Entesari, K.; Park, S.J.; Brown, A.R. Tuning in to RF MEMS. IEEE Microw. Mag. 2009, 10, 55–72. [Google Scholar] [CrossRef]
- Huang, X.; Feng, Q.; Xiang, Q. Bandpass filter with tunable bandwidth using quadruple-mode stub-loaded resonator. IEEE Microw. Wirel. Components Lett. 2012, 22, 176–178. [Google Scholar] [CrossRef]
- Kim, D.; Kim, B.; Nam, S. A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter. J. Electromagn. Eng. Sci. 2016, 16, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-S.; Kim, D.-H.; Yun, S.-W. Design of an Active Tunable Bandpass Filter for Spectrum Sensing Application in the TVWS Band. J. Electromagn. Eng. Sci. 2017, 17, 5–7. [Google Scholar] [CrossRef]
- Mansour, R.R.; Huang, F.; Fouladi, S.; Yan, W.D.; Nasr, M. High-Q tunable filters: Challenges and potential. IEEE Microw. Mag. 2014, 15, 70–82. [Google Scholar] [CrossRef]
- Naglich, E.J.; Lee, J.; Peroulis, D.; Chappell, W.J. A tunable bandpass-to-bandstop reconfigurable filter with independent bandwidths and tunable response shape. IEEE Trans. Microw. Theory Tech. 2010, 58, 3770–3779. [Google Scholar] [CrossRef]
- Lee, J.; Naglich, E.J.; Sigmarsson, H.H.; Peroulis, D.; Chappell, W.J. New bandstop filter circuit topology and its application to design of a bandstop-to-bandpass switchable filter. IEEE Trans. Microw. Theory Tech. 2013, 61, 1114–1123. [Google Scholar] [CrossRef]
- Cho, Y.H.; Rebeiz, G.M. 0.7-1.0-GHz Reconfigurable bandpass-to-bandstop filter with selectable 2- and 4-pole responses. IEEE Trans. Microw. Theory Tech. 2014, 62, 2626–2632. [Google Scholar] [CrossRef]
- Konca, M.; Warr, P.A. A Frequency-Reconfigurable Antenna Architecture Using Dielectric Fluids. IEEE Trans. Antennas Propag. 2015, 63, 5280–5286. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Zhang, D.; Liao, Y.; Zhang, H. Microstructure, magnetic-dielectric properties of flexible composite film for high frequency applications. Ceram. Int. 2018, 45, 6350–6355. [Google Scholar] [CrossRef]
- Yuan, J.; Luna, A.; Neri, W.; Zakri, C.; Schilling, T.; Colin, A.; Poulin, P. Graphene liquid crystal retarded percolation for new high-k materials. Nat. Commun. 2015, 6, 8700. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Liu, Y.; He, D.; Bai, J. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure. Appl. Phys. Lett. 2018, 112, 052902. [Google Scholar] [CrossRef] [Green Version]
- Entesari, K.; Saghati, A.P. Fluidics in microwave components. IEEE Microw. Mag. 2016, 17, 50–75. [Google Scholar] [CrossRef]
- Choi, S.; Su, W.; Tentzeris, M.M.; Lim, S. A novel fluid-reconfigurable advanced and delayed phase line using inkjet-printed microfluidic composite right/left-handed transmission line. IEEE Microw. Wirel. Components Lett. 2015, 25, 142–144. [Google Scholar] [CrossRef]
- Wang, M.; Kilgore, I.M.; Steer, M.B.; Adams, J.J. Characterization of Intermodulation Distortion in Reconfigurable Liquid Metal Antennas. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 279–282. [Google Scholar] [CrossRef]
- Traille, A.; Bouaziz, S.; Pinon, S.; Pons, P.; Aubert, H.; Boukabache, A. A Wireless Passive RCS-based Temperature Sensor using Liquid Metal and Microfluidics Technologies. In Proceedings of the 41st European Microwave Conference, Manchester, UK, 10–13 October 2011; pp. 45–48. [Google Scholar]
- Saghati, A.P.; Batra, J.S.; Kameoka, J.; Entesari, K. Miniature and reconfigurable CPW folded slot antennas employing liquid-metal capacitive loading. IEEE Trans. Antennas Propag. 2015, 63, 3798–3807. [Google Scholar] [CrossRef]
- Gough, R.C.; Dang, J.H.; Morishita, A.M.; Ohta, A.T.; Shiroma, W.A. Frequency-tunable slot antenna using continuous electrowetting of liquid metal. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–4. [Google Scholar]
- Morishita, A.M.; Dang, J.H.; Gough, R.C.; Ohta, A.T.; Shiroma, W.A. A tunable amplifier using reconfigurable liquid-metal double-stub tuners. In Proceedings of the Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 23–24 April 2015; pp. 1–4. [Google Scholar]
- Khan, M.R.; Hayes, G.J.; Zhang, S.; Dickey, M.D.; Lazzi, G. A pressure responsive fluidic microstrip open stub resonator using a liquid metal alloy. IEEE Microw. Wirel. Components Lett. 2012, 22, 577–579. [Google Scholar] [CrossRef]
- Eom, S.; Memon, M.U.; Lim, S. Frequency-Switchable Microfluidic CSRR-Loaded QMSIW Band-Pass Filter Using a Liquid Metal Alloy. Sensors 2017, 174, 699. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Lim, D.; Lim, S. Dual-band band-pass filter with fixed low band and fluidically-tunable high band. Sensors 2017, 17, 1884. [Google Scholar] [CrossRef] [PubMed]
- Mumcu, G.; Dey, A.; Palomo, T. Frequency-agile bandpass filters using liquid metal tunable broadside coupled split ring resonators. IEEE Microw. Wirel. Components Lett. 2013, 23, 187–189. [Google Scholar] [CrossRef]
- Morishita, A.M.; Gough, R.C.; Dang, J.H.; Ohta, A.T.; Shiroma, W.A. A liquid-metal reconfigurable log-periodic balun. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–3. [Google Scholar]
- Liu, X.; Xu, Y.; Ben, K.; Chen, Z.; Wang, Y.; Guan, Z. Transparent, durable and thermally stable PDMS-derivedsuperhydrophobic surfaces. Appl. Surf. Sci. 2015, 339, 94–101. [Google Scholar] [CrossRef]
- Chen, C.; Mehl, B.T.; Munshi, A.S.; Townsend, A.D.; Spence, D.M.; Martin, R.S. 3D-printed microfluidic devices: Fabrication, advantages and limitations—A mini review. Anal. Methods 2016, 8, 6005–6012. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Lim, S. Planar Inverted-F Antenna (PIFA) Using Microfluidic Impedance Tuner. Sensors 2018, 18, 3176. [Google Scholar] [CrossRef] [PubMed]
- Wits, W.W.; Weitkamp, S.J.; Van Es, J. Metal additive manufacturing of a high-pressure micro-pump. Procedia CIRP 2013, 7, 252–257. [Google Scholar] [CrossRef]
- Yeo, J.C.; Yu, J.; Loh, K.P.; Wang, Z.; Lim, C.T. Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity. ACS Sensors 2016, 1, 543–551. [Google Scholar] [CrossRef]
- Kleinstreuer, C.; Koo, J. Liquid flow in microchannels: Experimental observations and computational analyses of microfluidics effects. J. Micromech. Microeng. 2003, 13, 568. [Google Scholar]
- Bayraktar, T.; Pidugu, S.B. Characterization of liquid flows in microfluidic systems. Int. J. Heat Mass Transf. 2006, 49, 815–824. [Google Scholar] [CrossRef]
Liquid Metal (Proposed Work) | YIG | BST | Schottky Diode | Pin Diode | MEMS | |
---|---|---|---|---|---|---|
Tuning speed | Millisecond | Millisecond | Nanosecond | Nanosecond | Nanosecond | Microsecond |
Operating frequency | unlimited | limited | limited | limited | limited | limited |
Temperature Sensitivity | High | High | High | Low | Low | Low |
Biasing | No needed | Magnetic Field | Electric Field | Electric Field | Electric Field | Electric Field |
Power consumption | 50 mW | 0.5–5 W | 0 | 0 | 20–30 mA | 0 |
Cost | Low | High | High | Low | Low | High |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.; Lee, M.; Lim, S. Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch. Sensors 2019, 19, 1081. https://doi.org/10.3390/s19051081
Park E, Lee M, Lim S. Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch. Sensors. 2019; 19(5):1081. https://doi.org/10.3390/s19051081
Chicago/Turabian StylePark, Eiyong, Minjae Lee, and Sungjoon Lim. 2019. "Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch" Sensors 19, no. 5: 1081. https://doi.org/10.3390/s19051081
APA StylePark, E., Lee, M., & Lim, S. (2019). Switchable Bandpass/Bandstop Filter Using Liquid Metal Alloy as Fluidic Switch. Sensors, 19(5), 1081. https://doi.org/10.3390/s19051081