Humidity Sensors with Shielding Electrode Under Interdigitated Electrode
Abstract
:1. Introduction
2. Simulation of SIDE
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Tételin, A.; Pellet, C.; Laville, C.; N’Kaoua, G. Fast response humidity sensors for a medical microsystem. Sensors Actuators B Chem. 2003, 91, 211–218. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, C. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, S.J.; Kim, M.; Kyung, Y.; Eom, K. Capacitive Humidity Sensor Tag Smart Refrigerator System using the Capacitive to Voltage Converter (CVC). Int. J. Adv. Sci. Technol. 2011, 36, 15–26. [Google Scholar]
- Kolpakov, S.A.; Gordon, N.T.; Mou, C.; Zhou, K. Toward a new generation of photonic humidity sensors. Sensors 2014, 14, 3986–4013. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed]
- Pavinatto, F.J.; Paschoal, C.W.A.; Arias, A.C. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer. Biosens. Bioelectron. 2015, 67, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Lee, G.-B. Humidity Sensors: A Review. Sens. Lett. 2005, 3, 1–15. [Google Scholar] [CrossRef]
- Rittersma, Z.M. Recent achievements in miniaturised humidity sensors—A review of transduction techniques. Sensors Actuators A Phys. 2002, 96, 196–210. [Google Scholar] [CrossRef]
- Willett, K.M.; Gillett, N.P.; Jones, P.D.; Thorne, P.W. Attribution of observed surface humidity changes to human influence. Nature 2007, 449, 710–712. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.A.; Choudhary, A.; Sachan, V.K. Design issues for wireless sensor networks and smart humidity sensors for precision agriculture: A review. In Proceedings of the 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), Faridabad, India, 8–10 October 2015; pp. 181–187. [Google Scholar]
- Chandana, L.S.; Sekhar, A.J.R. Weather Monitoring Using Wireless Sensor Networks based on IOT. Int. J. Sci. Res. Sci. Technol. 2018, 4, 525–531. [Google Scholar]
- Yawut, C.; Kilaso, S. A Wireless Sensor Network for Weather and Disaster Alarm Systems. Int. Conf. Inf. Electron. Eng. 2011, 6, 155–159. [Google Scholar]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Fenner, R.; Zdankiewicz, E. Micromachined Water Vapor Sensors: A Review of Sensing Technologies. IEEE Sens. J. 2001, 1, 309–317. [Google Scholar] [CrossRef]
- Blank, T.A.; Eksperiandova, L.P.; Belikov, K.N. Recent trends of ceramic humidity sensors development: A review. Sensors Actuators B Chem. 2016, 228, 416–442. [Google Scholar] [CrossRef]
- Dokmeci, M.; Najafi, K. A high-sensitivity polyimide capacitive relative humidity sensor for monitoring anodically bonded hermetic micropackages. J. Microelectromech. Syst. 2001, 10, 197–204. [Google Scholar] [CrossRef]
- Gu, L.; Huang, Q.A.; Qin, M. A novel capacitive-type humidity sensor using CMOS fabrication technology. Sensors Actuators B Chem. 2004, 99, 491–498. [Google Scholar] [CrossRef]
- Wagner, T.; Krotzky, S.; Weiß, A.; Sauerwald, T.; Kohl, C.D.; Roggenbuck, J.; Tiemann, M. A high temperature capacitive humidity sensor based on mesoporous silica. Sensors 2011, 11, 3135–3144. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Jung, S.; Lee, J. Nano-grass polyimide-based humidity sensors. Sensors Actuators B Chem. 2011, 154, 2–8. [Google Scholar] [CrossRef]
- Yang, M.-R.; Chen, K.-S. Humidity sensors using polyvinyl alcohol mixed with electrolytes. Sensors Actuators B Chem. 1998, 49, 240–247. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, B.; Lee, H.; Kim, H.; Lee, K.; Park, H. Capacitive humidity sensor design based on anodic aluminum oxide. Sensors Actuators B Chem. 2009, 141, 441–446. [Google Scholar] [CrossRef]
- Feng, Z.S.; Chen, X.J.; Chen, J.J.; Hu, J. A novel humidity sensor based on alumina nanowire films. J. Phys. D Appl. Phys. 2012, 45, 225305. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I. Effects of partial replacement of iron with tungsten on microstructure, electrical, magnetic and humidity properties of copper-zinc ferrite material. J. Electron. Mater. 2014, 43, 3522–3526. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I.; Popa, K.; Catargiu, A.M. Electrical properties and humidity sensor characteristics of lead hydroxyapatite material. Appl. Surf. Sci. 2014, 303, 175–179. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I.; Condurache-Bota, S.; Constantinescu, C.; Praisler, M. Humidity sensors applicative characteristics of granularized and porous Bi2O3 thin films prepared by oxygen plasma-assisted pulsed laser deposition. Superlattices Microstruct. 2015, 77, 276–285. [Google Scholar] [CrossRef]
- Tudorache, F.; Petrila, I.; Slatineanu, T.; Dumitrescu, A.M.; Iordan, A.R.; Dobromir, M.; Palamaru, M.N. Humidity sensor characteristics and electrical properties of Ni–Zn–Dy ferrite material prepared using different chelating-fuel agents. J. Mater. Sci. Mater. Electron. 2016, 27, 272–278. [Google Scholar] [CrossRef]
- Suzuki, T.; Tanner, P.; Thiel, D.V. O2 plasma treated polyimide-based humidity sensors. Analyst 2002, 127, 1342–1346. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, E.; Pantalei, S.; Pecora, A.; Valletta, A.; Maiolo, L.; Minotti, A.; Macagnano, A.; Fortunato, G.; Bearzotti, A. Design and optimization of an ultra thin flexible capacitive humidity sensor. Sensors Actuators B Chem. 2009, 143, 302–307. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.M.; Moon, B.M.; Kim, K. High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology. Microsyst. Technol. 2010, 16, 2017–2021. [Google Scholar] [CrossRef]
- Liu, M.Q.; Wang, C.; Kim, N.Y. High-sensitivity and low-hysteresis porous mim-type capacitive humidity sensor using functional polymer mixed with TiO2 microparticles. Sensors 2017, 17, 284. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, C.-D.; Sun, S.-L.; Segre, C.U.; Stetter, J.R. Comparison of conductometric humidity-sensing polymers. Sens. Actuators B Chem. 1997, 40, 211–216. [Google Scholar] [CrossRef]
- Fujita, S.; Kamei, Y. Electrical properties of polyimide with water absorption. In Proceedings of the 11th IEEE International Symposium on Electrets, Melbourne, VIC, Australia, 1–3 October 2002; pp. 275–278. [Google Scholar]
- Olthuis, W.; Sprenkels, A.J.; Bomer, J.G.; Bergveld, P. Planar interdigitated electrolyte-conductivity sensors on an insulating substrate covered with Ta2O5. Sensors Actuators B Chem. 1997, 43, 211–216. [Google Scholar] [CrossRef]
- Singh, K.V.; Bhura, D.K.; Nandamuri, G.; Whited, A.M.; Evans, D.; King, J.; Solanki, R. Nanoparticle-enhanced sensitivity of a nanogap-interdigitated electrode array impedimetric biosensor. Langmuir 2011, 27, 13931–13939. [Google Scholar] [CrossRef]
- Schaur, S.; Jakoby, B. A numerically efficient method of modeling interdigitated electrodes for capacitive film sensing. Procedia Eng. 2011, 25, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Blue, R.; Uttamchandani, D. Chemicapacitors as a versatile platform for miniature gas and vapor sensors. Meas. Sci. Technol. 2017, 28, 22001–22024. [Google Scholar] [CrossRef]
- Qiang, T.; Wang, C.; Liu, M.Q.; Adhikari, K.K.; Liang, J.G.; Wang, L.; Li, Y.; Wu, Y.M.; Yang, G.H.; Meng, F.Y.; et al. High-Performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. Sensors Actuators B Chem. 2018, 258, 704–714. [Google Scholar] [CrossRef]
- Schubert, P.J.; Nevin, J.H. A polyimide-based capacitive humidity sensor. IEEE Trans. Electron Devices 1985, 32, 1220–1223. [Google Scholar] [CrossRef]
- Laville, C.; Delétage, J.Y.; Pellet, C. Humidity sensors for a pulmonary function diagnostic microsystem. Sensors Actuators B Chem. 2001, 76, 304–309. [Google Scholar] [CrossRef]
- Kim, J.H.; Hong, S.M.; Lee, J.S.; Moon, B.M.; Kim, K. High sensitivity capacitive humidity sensor with a novel polyimide design fabricated by mems technology. In Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2009, Shenzhen, China, 5–8 January 2009; pp. 703–706. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Wang, Q.; Sheng, W.; Wang, X.; Zhang, K.; Du, L.; Zhou, J. Humidity Sensors with Shielding Electrode Under Interdigitated Electrode. Sensors 2019, 19, 659. https://doi.org/10.3390/s19030659
Liu H, Wang Q, Sheng W, Wang X, Zhang K, Du L, Zhou J. Humidity Sensors with Shielding Electrode Under Interdigitated Electrode. Sensors. 2019; 19(3):659. https://doi.org/10.3390/s19030659
Chicago/Turabian StyleLiu, Hong, Qi Wang, Wenjie Sheng, Xubo Wang, Kaidi Zhang, Lin Du, and Jia Zhou. 2019. "Humidity Sensors with Shielding Electrode Under Interdigitated Electrode" Sensors 19, no. 3: 659. https://doi.org/10.3390/s19030659
APA StyleLiu, H., Wang, Q., Sheng, W., Wang, X., Zhang, K., Du, L., & Zhou, J. (2019). Humidity Sensors with Shielding Electrode Under Interdigitated Electrode. Sensors, 19(3), 659. https://doi.org/10.3390/s19030659