Critical Excitation of the Fundamental Quasi-Shear Mode Wave in Waveguide Bars for Elevated Temperature Applications
Abstract
:1. Introduction
2. Excitation Characteristics Analyses
3. Critical Excitation Analysis
4. High Temperature Performance Tests
4.1. Experimental System Setup
4.2. Experimental Results Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, C.; Harley, J.B.; Bergés, M.; Greve, D.W.; Oppenheim, I.J. Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition. Ultrasonics 2015, 58, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.T.; Gong, J.M.; Ling, X.; He, X.Y. Measurement of local creep deformation in cross-weld specimen by optical fiber marking and remote monitoring. J. Press. Vessel Technol. 2002, 124, 54–58. [Google Scholar] [CrossRef]
- Tu, S.T. Principle of High Temperature Structural Integrity; Science Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Schaal, C.; Bischoff, S.; Gaul, L. Damage detection in multi-wire cables using guided ultrasonic waves. Struct. Health Monit. 2016, 15, 279–288. [Google Scholar] [CrossRef]
- Yuan, S.F.; Lai, X.; Zhao, X.S.; Xu, X.; Zhang, L. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology. Smart Mater. Struct. 2006, 15, 1–8. [Google Scholar] [CrossRef]
- Wang, K.; Liu, M.L.; Su, Z.Q.; Yuan, S.F.; Fan, Z. Analytical insight into “breathing” crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks. Ultrasonics 2018, 88, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Su, Z.Q.; Wang, Q.; Cheng, L.; Qing, X.L. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: Theory, simulation, and experimental validation. Ultrasonics 2014, 54, 770–778. [Google Scholar] [CrossRef]
- Yang, Y.; Ng, C.T.; Kotousov, A.; Sohn, H.; Lim, H.J. Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies. Mech. Syst. Signal Process. 2018, 99, 760–773. [Google Scholar] [CrossRef]
- Travaglini, C.; Bescond, C.; Viens, M.; Belanger, P. Feasibility of high frequency guided wave crack monitoring. Struct. Health Monit. 2016, 16, 418–427. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, S.; Qiu, L.; Wang, H.; Yang, W. On-line prognosis of fatigue crack propagation based on Gaussian weight-mixture proposal particle filter. Ultrasonics 2017, 82, 134–144. [Google Scholar] [CrossRef]
- Xiang, Y.X.; Deng, M.X.; Xuan, F.Z. Creep damage characterization using nonlinear ultrasonic guided wave method: A mesoscale model. J. Appl. Phys. 2014, 115, 273–284. [Google Scholar] [CrossRef]
- Schulz, M.J.; Sundaresan, M.J.; Mcmichael, J.; Clayton, D.; Sadler, R.; Nagel, B. Piezoelectric materials at elevated temperature. J. Intell. Mater. Syst. 2003, 14, 693–705. [Google Scholar] [CrossRef]
- Gan, C.B.; Wei, Y.M.; Yang, S.X. Longitudinal wave propagation in a rod with variable cross-section. J. Sound Vib. 2014, 333, 434–445. [Google Scholar] [CrossRef]
- Ono, Y.; Zhang, Y.; Jen, C.K.; Moisan, J.F.; Su, C.Y. Aluminum buffer rods for ultrasonic monitoring at elevated temperatures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Cheong, Y.M.; Kim, K.M.; Kim, D.J. High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility. Nucl. Eng. Technol. 2017, 49, 1463–1471. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, F.; Cegla, F.B. Acoustic waveguides: An attractive alternative for accurate and robust contact thermometry. Sens. Actuators A Phys. 2018, 270, 84–88. [Google Scholar] [CrossRef]
- Fan, Z.; Lowe, M.J.S.; Castaings, M.; Bacon, C. Torsional waves propagation along a waveguide of arbitrary cross section immersed in a perfect fluid. J. Acoust. Soc. Am. 2008, 124, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Zuo, P.; Zhou, Y.; Fan, Z. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections. AIP Adv. 2016, 6, 075207. [Google Scholar] [CrossRef] [Green Version]
- Kažys, R.; Žukauskas, E.; Mažeika, L.; Raišutis, R. Propagation of ultrasonic shear horizontal waves in rectangular waveguides. Int. J. Struct. Stab. Dyn. 2016, 16, 1550041. [Google Scholar] [CrossRef]
- Cawley, P.; Cegla, F.B. Ultrasonic Non-Destructive Testing. U.S. Patent 2016/0109414A1, 21 April 2016. [Google Scholar]
- Miao, H.C.; Huan, Q.; Li, F.X. Excitation and reception of pure shear horizontal waves by using face-shear d24 mode piezoelectric wafers. Smart Mater. Struct. 2016, 25, 11LT01. [Google Scholar] [CrossRef]
- Miao, H.C.; Dong, S.X.; Li, F.X. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics. J. Appl. Phys. 2016, 119, 2571. [Google Scholar] [CrossRef]
- Victor, G. Structural Health Monitoring with Piezoelectric Wafer Active Sensors; Academic Press Inc.: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Cegla, F.B. Energy concentration at the center of large aspect ratio rectangular waveguides at high frequencies. J. Acoust. Soc. Am. 2008, 123, 4218–4226. [Google Scholar] [CrossRef] [PubMed]
- Cegla, F.B.; Cawley, P.; Allin, J.; Davies, J. High-temperature (>500 °C) wall thickness monitoring using dry-coupled ultrasonic waveguide transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.H.; Wang, Q.Y.; Liao, Z.Y.; Tu, Y.; Tu, S.T. Design of waveguide bars for transmitting a pure shear horizontal wave to monitor high temperature components. Materials 2017, 10, 1027. [Google Scholar]
- Liao, Z.Y.; Cai, X.T.; Tu, Y.; Jia, J.H.; Tu, S.T. Excitation of a fundamental shear horizontal wave using a line source. In Proceedings of the 7th Asia Pacific Workshop on Structural Health Monitoring (APWSHM-2018), Hong Kong, China, 12–15 November 2018; pp. 470–481. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Liao, Z.; Cai, X.; Tu, Y.; Tu, S.-T. Critical Excitation of the Fundamental Quasi-Shear Mode Wave in Waveguide Bars for Elevated Temperature Applications. Sensors 2019, 19, 793. https://doi.org/10.3390/s19040793
Jia J, Liao Z, Cai X, Tu Y, Tu S-T. Critical Excitation of the Fundamental Quasi-Shear Mode Wave in Waveguide Bars for Elevated Temperature Applications. Sensors. 2019; 19(4):793. https://doi.org/10.3390/s19040793
Chicago/Turabian StyleJia, Jiuhong, Zuoyu Liao, Xiaotao Cai, Yun Tu, and Shan-Tung Tu. 2019. "Critical Excitation of the Fundamental Quasi-Shear Mode Wave in Waveguide Bars for Elevated Temperature Applications" Sensors 19, no. 4: 793. https://doi.org/10.3390/s19040793
APA StyleJia, J., Liao, Z., Cai, X., Tu, Y., & Tu, S. -T. (2019). Critical Excitation of the Fundamental Quasi-Shear Mode Wave in Waveguide Bars for Elevated Temperature Applications. Sensors, 19(4), 793. https://doi.org/10.3390/s19040793