Trajectories and Resource Management of Flying Base Stations for C-V2X
Abstract
:1. Introduction
2. Related Work
3. System Model
3.1. Reference Scenario and Traffic Generated
3.2. Radio Channel and Physical Layer
4. Aerial Operation
4.1. Radio Resource Scheduling
Algorithm 1: Radio resource scheduling. |
Data: UAV and TBSs positions, vehicle positions and data-rate demand, , , ATG channel, , , TBSs and UAV resource pool capacity Result: Set of served and set of unserved vehicles |
4.2. UAV Trajectory Planning
- the vehicles out of TBSs service were grouped in K clusters, where (e.g., 10 clusters for of active vehicles, 20 clusters for , etc.) using the centroid-linkage UPGMC algorithm [48];
- for each cluster (, …, K), its central point, the centroid, was computed;
- for each centroid (, …, K), a cost function, , was computed (see below);
- the centroid having the smallest cost value was selected as the next stop and its distance from Q is denoted as ;
- the UAV started flying in the direction of the chosen centroid along a segment path and reached the centroid in seconds, where s is the UAV speed;
- during its entire flight, the UAV served all vehicles encountered in its coverage area.
Algorithm 2: Unmmaned aerial vehicle (UAV) trajectory definition. |
Data: Q, vehicle positions and data-rate demand Result: Next trajectory point Create unserved vehicles set ; create cluster set , create cost function vector ; initialize time instant ; |
5. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Festag, A. Standards for vehicular communication—From IEEE 802.11p to 5G. Elektrotech. Inf. 2015, 132, 409–416. [Google Scholar] [CrossRef]
- Seo, H.; Lee, K.D.; Yasukawa, S.; Peng, Y.; Sartori, P. LTE evolution for vehicle-to-everything services. IEEE Commun. Mag. 2016, 54, 22–28. [Google Scholar] [CrossRef]
- Sun, S.H.; Hu, J.L.; Peng, Y.; Pan, X.M.; Zhao, L.; Fang, J.Y. Support for vehicle-to-everything services based on LTE. IEEE Wirel. Commun. 2016, 23, 4–8. [Google Scholar] [CrossRef]
- Bazzi, A.; Masini, B.M.; Zanella, A.; Thibault, I. On the Performance of IEEE 802.11p and LTE-V2V for the Cooperative Awareness of Connected Vehicles. IEEE Trans. Veh. Technol. 2017, 66, 10419–10432. [Google Scholar] [CrossRef]
- CAMP Vehicle Safety Communications Consortium. Vehicle Safety Communications Project, Task 3 Final Report, Identify Intelligent Vehicle Safety Applications Enabled by DSRC; National Highway Traffic Safety Administration, US Department of Transportation: Washington, DC, USA, 2005.
- Intelligent Transport Systems (ITS); Vehicular Communications. Basic Set of Applications. Definitions. ETSI TR 102.638 V1.1.1. Available online: https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/01.01.01_60/tr_102638v010101p.pdf (accessed on 16 February 2019).
- Technical Specification Group Radio Access Network. Study on LTE-Based V2X Services. 3 GPP TR 36.885 V14.0.0. 2016. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2934 (accessed on 16 February 2019).
- Technical Specification Group Radio Access Network. Study on Enhancement of 3GPP Support for 5G V2X Services. 3GPP TR 22.886 V16.1.1. 2018. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3108 (accessed on 16 February 2019).
- Gunther, H.; Trauer, O.; Wolf, L. The potential of collective perception in vehicular ad-hoc networks. In Proceedings of the 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Bor-Yaliniz, I.; Yanikomeroglu, H. The new frontier in RAN heterogeneity: Multi-tier drone-cells. IEEE Commun. Mag. 2016, 54, 48–55. [Google Scholar] [CrossRef]
- Li, Y.; Cai, L. UAV-Assisted Dynamic Coverage in a Heterogeneous Cellular System. IEEE Netw. 2017, 31, 56–61. [Google Scholar] [CrossRef]
- Mignardi, S.; Verdone, R. On the Performance Improvement of a Cellular Network Supported by an Unmanned Aerial Base Station. In Proceedings of the IEEE 29th International Conference on Teletraffic Congress (ITC 29), Genoa, Italy, 4–8 September 2017; Volume 2, pp. 7–12. [Google Scholar]
- Masini, B.M.; Bazzi, A.; Zanella, A. A Survey on the Roadmap to Mandate on Board Connectivity and Enable V2V-Based Vehicular Sensor Networks. Sensors 2018, 18. [Google Scholar] [CrossRef]
- Costa-Montenegro, E.; Quinoy-Garcia, F.; Gonzalez-castano, F.J.; Gil-Castineira, F. Vehicular Entertainment Systems: Mobile Application Enhancement in Networked Infrastructures. IEEE Veh. Technol. Mag. 2012, 7, 73–79. [Google Scholar] [CrossRef]
- Vegni, A.M.; Loscrí, V. A Survey on Vehicular Social Networks. IEEE Commun. Surv. Tutor. 2015, 17, 2397–2419. [Google Scholar] [CrossRef]
- Du, R.; Chen, C.; Yang, B.; Lu, N.; Guan, X.; Shen, X. Effective Urban Traffic Monitoring by Vehicular Sensor Networks. IEEE Trans. Veh. Technol. 2015, 64, 273–286. [Google Scholar] [CrossRef] [Green Version]
- Araniti, G.; Campolo, C.; Condoluci, M.; Iera, A.; Molinaro, A. LTE for vehicular networking: A survey. IEEE Commun. Mag. 2013, 51, 148–157. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, L.; Shen, X. D2D for Intelligent Transportation Systems: A Feasibility Study. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1784–1793. [Google Scholar] [CrossRef]
- Molina-Masegosa, R.; Gozalvez, J. LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications. IEEE Veh. Technol. Mag. 2017, 12, 30–39. [Google Scholar] [CrossRef]
- Bazzi, A.; Cecchini, G.; Zanella, A.; Masini, B.M. Study of the Impact of PHY and MAC Parameters in 3GPP C-V2V Mode 4. IEEE Access 2018, 6, 71685–71698. [Google Scholar] [CrossRef]
- Ergen, M. Critical penetration for vehicular networks. IEEE Commun. Lett. 2010, 14, 414–416. [Google Scholar] [CrossRef]
- Campolo, C.; Molinaro, A.; Iera, A.; Menichella, F. 5G Network Slicing for Vehicle-to-Everything Services. IEEE Wirel. Commun. 2017, 24, 38–45. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, Q.; Chatzimisios, P.; Xiang, W.; Zhou, Y. Heterogeneous Vehicular Networking: A Survey on Architecture, Challenges, and Solutions. IEEE Commun. Surv. Tutor. 2015, 17, 2377–2396. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile Internet of Things: Can UAVs Provide an Energy-Efficient Mobile Architecture? In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Sharma, V.; Bennis, M.; Kumar, R. UAV-Assisted Heterogeneous Networks for Capacity Enhancement. IEEE Commun. Lett. 2016, 20, 1207–1210. [Google Scholar] [CrossRef]
- Chen, J.; Yatnalli, U.; Gesbert, D. Learning radio maps for UAV-aided wireless networks: A segmented regression approach. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Verdone, R.; Mignardi, S. Joint Aerial-Terrestrial Resource Management in UAV-Aided Mobile Radio Networks. IEEE Netw. 2018, 32, 70–75. [Google Scholar] [CrossRef]
- Mignardi, S.; Verdone, R. Joint path and radio resource management for UAVs supporting mobile radio networks. In Proceedings of the IEEE 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri, Italy, 20–22 June 2018; pp. 1–7. [Google Scholar]
- Oubbati, O.S.; Lakas, A.; Zhou, F.; Güneş, M.; Lagraa, N.; Yagoubi, M.B. Intelligent UAV-assisted routing protocol for urban VANETs. Comput. Commun. 2017, 107, 93–111. [Google Scholar] [CrossRef]
- Fawaz, W.; Atallah, R.; Assi, C.; Khabbaz, M. Unmanned Aerial Vehicles as Store-Carry-Forward Nodes for Vehicular Networks. IEEE Access 2017, 5, 23710–23718. [Google Scholar] [CrossRef]
- Sedjelmaci, H.; Messous, M.A.; Senouci, S.M.; Brahmi, I.H. Toward a lightweight and efficient UAV-aided VANET. Trans. Emerg. Telecommun. Technol. 2018. [Google Scholar] [CrossRef]
- Wang, X.; Fu, L.; Zhang, Y.; Gan, X.; Wang, X. VDNet: An infrastructure-less UAV-assisted sparse VANET system with vehicle location prediction. Wirel. Commun. Mob. Comput. 2016, 16, 2991–3003. [Google Scholar] [CrossRef]
- Fan, X.; Huang, C.; Fu, B.; Wen, S.; Chen, X. UAV-Assisted Data Dissemination in Delay-Constrained VANETs. Mob. Inf. Syst. 2018. [Google Scholar] [CrossRef]
- Seliem, H.; Shahidi, R.; Ahmed, M.H.; Shehata, M.S. Drone-Based Highway-VANET and DAS Service. IEEE Access 2018, 6, 20125–20137. [Google Scholar] [CrossRef]
- Menouar, H.; Guvenc, I.; Akkaya, K.; Uluagac, A.S.; Kadri, A.; Tuncer, A. UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges. IEEE Commun. Mag 2017, 55, 22–28. [Google Scholar] [CrossRef]
- Shi, W.; Zhou, H.; Li, J.; Xu, W.; Zhang, N.; Shen, X. Drone Assisted Vehicular Networks: Architecture, Challenges and Opportunities. IEEE Netw. 2018, 32, 130–137. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, N.; Lu, N.; Shen, X.S. Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Veh. Technol. Mag. 2015, 10, 36–44. [Google Scholar] [CrossRef]
- Hadiwardoyo, S.A.; Hernández-Orallo, E.; Calafate, C.T.; Cano, J.C.; Manzoni, P. Experimental characterization of UAV-to-car communications. Comput. Netw. 2018, 136, 105–118. [Google Scholar] [CrossRef]
- Bazzi, A.; Masini, B.M.; Zanella, A.; Pasolini, G. IEEE 802.11 p for cellular offloading in vehicular sensor networks. Comput. Commun. 2015, 60, 97–108. [Google Scholar] [CrossRef]
- Hajj, J.; Mazur, M.; Wisniewski, A.; Khoury, R. Telecom Operators in the Age of Drones: Preparing for the New Era. 2017. Available online: https://www.strategyand.pwc.com/media/file/Telecom-operators-in-the-age-of-drones.pdf (accessed on 8 February 2019).
- Dormehl, L. 7 Drones That Can Stay Airborne for Hours—And the Tech That Makes it Possible. 2008. Available online: https://www.digitaltrends.com/cool-tech/drones-with-super-long-flight-times/ (accessed on 8 February 2019).
- Choi, C.Q. New Electric Drone Has Groundbreaking Flight Time. 2018. Available online: https://spectrum.ieee.org/energywise/aerospace/aviation/new-electric-drone-has-groundbreaking-flight-time (accessed on 8 February 2019).
- Mott, N. Experimental Drone Recharges Without Landing. 2016. Available online: https://www.inverse.com/article/22469-experimental-drone-recharges-without-landing. (accessed on 8 February 2019).
- Patwary, M.N.; Rapajic, P.B.; Oppermann, I. Capacity and coverage increase with repeaters in UMTS urban cellular mobile communication environment. IEEE Trans. Commun. 2005, 53, 1620–1624. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014, 3, 569–572. [Google Scholar] [CrossRef]
- Mignardi, S.; Buratti, C.; Verdone, R. On the Impact of Radio Channel over REM-Aware UAV-Aided Mobile Networks. In Proceedings of the IEEE 22nd International ITG Workshop on Smart Antennas (WSA 2018), Bochum, Germany, 14–16 March 2018. [Google Scholar]
- Deruyck, M.; Marri, A.; Mignardi, S.; Martens, L.; Joseph, W.; Verdone, R. Performance Evaluation of the Dynamic Trajectory Design for an Unmanned Aerial Base Station in a Single Frequency Network. In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017. [Google Scholar]
- Day, W.H.E.; Edelsbrunner, H. Efficient algorithms for agglomerative hierarchical clustering methods. J. Classif. 1984, 1, 7–24. [Google Scholar] [CrossRef]
Parameter Definition | Value |
---|---|
Rectangular area, A | 1.8 × 1.6 m |
Average number of vehicles in the scenario | 600 |
Number of TBSs in the area, | 16 |
TBSs equivalent radiated power, | 43 dBm |
UAV transmit power, | 20 dBm |
Bilateral noise density, | 4 × 10 W/Hz |
Single carrier frequency on UAV and TBS, | 2600 MHz |
Subcarrier spacing, | 15 kHz |
Number of subcarriers of a resource block | 12 |
Maximum capacity, | 100 Mb/s |
Time slot interval | 0.5 ms |
Frame time duration | 10 ms |
Bandwidth of TBSs | [5–20] MHz |
Reuse factor | 1 |
UAV speed, s | 20 m/s |
UAV altitude, h | 120 m |
UAV antenna aperture angle, | 120 deg |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mignardi, S.; Buratti, C.; Bazzi, A.; Verdone, R. Trajectories and Resource Management of Flying Base Stations for C-V2X. Sensors 2019, 19, 811. https://doi.org/10.3390/s19040811
Mignardi S, Buratti C, Bazzi A, Verdone R. Trajectories and Resource Management of Flying Base Stations for C-V2X. Sensors. 2019; 19(4):811. https://doi.org/10.3390/s19040811
Chicago/Turabian StyleMignardi, Silvia, Chiara Buratti, Alessandro Bazzi, and Roberto Verdone. 2019. "Trajectories and Resource Management of Flying Base Stations for C-V2X" Sensors 19, no. 4: 811. https://doi.org/10.3390/s19040811
APA StyleMignardi, S., Buratti, C., Bazzi, A., & Verdone, R. (2019). Trajectories and Resource Management of Flying Base Stations for C-V2X. Sensors, 19(4), 811. https://doi.org/10.3390/s19040811