Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S
Abstract
:- Introduction
- Recent Advances in NO2 Gas Detection
- 2.1.
- Graphene and Its Derivatives-Based NO2 Sensors
- 2.2.
- Transition Metal Dichalcogenide (TMD)-Based NO2 Sensors
- 2.3.
- Metal and Metal-Oxide Nanostructure-Based NO2 Sensors
- 2.4.
- GaN-Based NO2 Sensors
- 2.5.
- Organic Materials-Based NO2 Sensors
- 2.6.
- Hybrid Materials-Based NO2 Sensors
- Recent Advances in SO2 Gas Detection
- 3.1.
- Carbon Material-Based SO2 Sensors
- 3.2.
- Metal and Metal-Oxide Nanostructures-Based SO2 Sensors
- 3.3.
- GaN-Based SO2 Sensors
- 3.4.
- Solid Electrolyte-Based SO2 Sensors
- 3.5.
- Zeolite-Based SO2 Sensors
- 3.6.
- Paper-Based SO2 Sensors
- Recent Advances in H2S Gas Detection
- 4.1.
- Carbon Material-Based H2S Sensors
- 4.2.
- GaN-Based H2S Sensors
- 4.3.
- Metal and Metal Oxide-Based H2S Sensors
- 4.3.1.
- Nanostructured Metal Oxide-Based Sensors
- 4.3.2.
- Mesoporous Metal Oxide-Based Sensors
- 4.3.3.
- Metal Oxide Microsphere-Based Sensors
- 4.4.
- MOF-Based H2S Sensors
- 4.5.
- Organic Materials-Based H2S Sensors
- 4.6.
- Solid Electrolytes-Based H2S Sensors
- Recent Density-Functional Theory (DFT) Study of Gas Molecule-Sensor Interaction
- Calibration of Toxic Gas Sensors
- Toxic Gas Sensors in Internet of Things (IoT) Applications
- Future Perspectives and Conclusions
1. Introduction
2. Recent Advances in NO2 Gas Detection
2.1. Graphene and Its Derivatives-Based NO2 Sensors
2.2. Transition Metal Dichalcogenide (TMD)-Based NO2 Sensors
2.3. Metal and Metal-Oxide Nanostructure-Based NO2 Sensors
2.4. GaN-Based NO2 Sensors
2.5. Organic Materials-Based NO2 Sensors
2.6. Hybrid Materials-Based NO2 Sensors
3. Recent Advances in SO2 Gas Detection
3.1. Carbon Material-Based SO2 Sensors
3.2. Metal and Metal-Oxide Nanostructures-Based SO2 Sensors
3.3. GaN-Based SO2 Sensors
3.4. Solid Electrolyte-Based SO2 Sensors
3.5. Zeolite-Based SO2 Sensors
3.6. Paper-Based SO2 Sensors
4. Recent Advances in H2S Gas Detection
4.1. Carbon Material-Based H2S Sensors
4.2. GaN-Based H2S Sensors
4.3. Metal and Metal Oxide-Based H2S Sensors
4.3.1. Nanostructured Metal Oxide-Based Sensors
4.3.2. Mesoporous Metal Oxide-Based Sensors
4.3.3. Metal Oxide Microsphere-Based Sensors
4.4. MOF-Based H2S Sensors
4.5. Organic Materials-Based H2S Sensors
4.6. Solid Electrolytes-Based H2S Sensors
5. Recent Density-Functional Theory (DFT) Study of Gas Molecule-Sensor Interaction
6. Calibration of Toxic Gas Sensors
7. Toxic Gas Sensors in Internet of Things (IoT) Applications
8. Future Perspectives and Conclusions
Acknowledgments
Conflicts of Interest
References
- Anenberg, S.C.; Miller, J.; Minjares, R.; Du, L.; Henze, D.K.; Lacey, F.; Malley, C.S.; Emberson, L.; Franco, V.; Klimont, Z.; et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 2017, 545, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Boleij, J.S.M.; Ruigewaard, P.; Hoek, F.; Thairu, H.; Wafula, E.; Onyango, F.; de Koning, H. Domestic air pollution from biomass burning in Kenya. Atmos. Environ. 1989, 23, 1677–1681. [Google Scholar] [CrossRef]
- Robinson, E.; Robbins, R.C. Gaseous Nitrogen Compound Pollutants from Urban and Natural Sources. J. Air Pollut. Control Assoc. 1970, 20, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.A.; Utell, M.J.; Morrow, P.E.; Speers, D.M.; Gibb, F.R. Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics. Am. Rev. Respir. Dis. 1986, 134, 1203–1208. [Google Scholar] [PubMed]
- Ehrlich, R. Effect of nitrogen dioxide on resistance to respiratory infection. Bacteriol. Rev. 1966, 30, 604–614. [Google Scholar] [PubMed]
- Genc, S.; Zadeoglulari, Z.; Fuss, S.H.; Genc, K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012, 2012. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, W.; Hong, Y.; Lee, G.; Yoon, D.S. Recent advances in carbon material-based NO2 gas sensors. Sens. Actuators B Chem. 2018, 255, 1788–1804. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Li, Y.R.; Zhu, T.Y.; Ye, M. Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2. Fuel 2015, 143, 536–542. [Google Scholar] [CrossRef]
- Chatterjee, C.; Sen, A. Sensitive colorimetric sensors for visual detection of carbon dioxide and sulfur dioxide. J. Mater. Chem. A 2015, 3, 5642–5647. [Google Scholar] [CrossRef]
- Khan, R.R.; Siddiqui, M.J.A. Review on effects of Particulates; Sulfur Dioxide and Nitrogen Dioxide on Human Health. Int. Res. J. Environment Sci. 2014, 3, 70–73. [Google Scholar]
- Nisar, J.; Topalian, Z.; Sarkar, A.D.; Osterlund, L.; Ahuja, R. TiO2-based gas sensor: A possible application to SO2. ACS Appl. Mater. Interfaces 2013, 5, 8516–8522. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, K.; Wang, X.; Sui, Y.; Zou, B.; Zheng, W.; Zou, G. Rapid and selective H2S detection of hierarchical ZnSnO3 nanocages. Sens. Actuators B Chem. 2011, 159, 245–250. [Google Scholar] [CrossRef]
- Bari, H.R.; Patil, P.P.; Patil, S.B.; Bari, A.R. Detection of H2S gas at lower operating temperature using sprayed nanostructured In2O3 thin films. Bull. Mater. Sci. 2013, 36, 967–972. [Google Scholar] [CrossRef]
- Chou, C. Hydrogen Sulfide: Human Health Aspects: Concise International Chemical Assessment Document 53; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Wiheeb, A.D.; Shamsudin, I.K.; Ahmad, M.A.; Murat, M.N.; Kim, J.; Othman, M.R. Present Technologies for Hydrogen Sulfide Removal from Gaseous Mixtures. Rev. Chem. Eng. 2013, 29, 449–470. [Google Scholar] [CrossRef]
- Levitsky, I.A. Porous Silicon Structures as Optical Gas Sensors. Sensors 2015, 15, 19968–19991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hök, B.; Blückert, A.; Löfving, J. Acoustic gas sensor with ppm resolution. Sens. Rev. 2000, 20, 139–142. [Google Scholar] [CrossRef]
- Li, M.; Myers, E.B.; Tang, H.X.; Aldridge, S.J.; McCaig, H.C.; Whiting, J.J.; Simonson, R.J.; Lewis, N.S.; Roukes, M.L. Nanoelectromechanical Resonator Arrays for Ultrafast, Gas-Phase Chromatographic Chemical Analysis. Nano Lett. 2010, 10, 3899–3903. [Google Scholar] [CrossRef] [Green Version]
- Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas Sensors: A Review. Sens. Transducers 2014, 168, 61–75. [Google Scholar]
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.; Kim, H.Y.; Ahn, J.; Park, Y.M.; Lee, K.Y.; Kim, J. Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 2010, 10, 1002–1004. [Google Scholar] [CrossRef]
- Iqbal, N.; Afzal, A.; Cioffi, N.; Sabbatini, L.; Torsi, L. NOx sensing one- and two-dimensional carbon nanostructures and nanohybrids: Progress and perspectives. Sens. Actuators B Chem. 2013, 181, 9–21. [Google Scholar] [CrossRef]
- Yuan, W.; Shi, G. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078–10091. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, C.; Cai, W.; Li, H.; Ji, H.; Kholmanov, I.; Wu, Y.; Piner, R.D. Ruoff RS Detection of sulfur dioxide gas with graphene field effect transistor. Appl. Phys. Lett. 2012, 100, 163114. [Google Scholar] [CrossRef]
- Rana, M.M.; Ibrahim, D.S.; Asyraf, M.R.M.; Jarin, S.; Tomal, A. A review on recent advances of CNTs as gas sensors. Sens. Rev. 2017, 37, 127–136. [Google Scholar] [CrossRef]
- Kumar, D.; Chaturvedi, P.; Saho, P.; Jha, P.; Chouksey, A.; Lal, M.; Rawat, J.S.B.S.; Tandon, R.P.; Chaudhury, P.K. Effect of single wall carbon nanotube networks on gas sensor response and detection limit. Sens. Actuators B Chem. 2017, 240, 1134–1140. [Google Scholar] [CrossRef]
- Kang, I.-S.; So, H.-M.; Bang, G.-S.; Kwak, J.-H.; Lee, J.-O.; Won Ahn, C. Recovery improvement of graphene-based gas sensors functionalized with nanoscale heterojunctions. Appl. Phys. Lett. 2012, 101, 123504. [Google Scholar] [CrossRef]
- Chen, G.; Paronyan, T.M.; Pigos, E.M.; Harutyunyan, A.R. Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. Sci. Rep. 2012, 2, 343. [Google Scholar] [CrossRef]
- Ye, H.; Nallon, E.C.; Schnee, V.P.; Shi, C.; Jiang, K.; Xu, J.; Feng, S.; Wang, H.; Li, Q. Enhance the Discrimination Precision of Graphene Gas Sensors with a Hidden Markov Model. Anal. Chem. 2018, 90, 13790–13795. [Google Scholar] [CrossRef]
- Pearce, R.; Iakimov, T.; Andersson, M.; Hultman, L.; Spetz, A.L.; Yakimova, R. Epitaxially grown graphene based gas sensors for ultra-sensitive NO2 detection. Sens. Actuators B Chem. 2011, 155, 451–455. [Google Scholar] [CrossRef]
- Nallon, E.C.; Schnee, V.P.; Bright, C.; Polcha, M.P.; Li, Q. Chemical Discrimination with an Unmodified Graphene Chemical Sensor. ACS Sens. 2016, 1, 26–31. [Google Scholar] [CrossRef]
- Esmaeilzadeh, J.; Marzbanrad, E.; Zamani, C.; Raissi, B. Fabrication of undoped-TiO2 nanostructure-based NO2 high temperature gas sensor using low frequency AC electrophoretic deposition method. Sens. Actuators B Chem. 2012, 161, 401–405. [Google Scholar] [CrossRef]
- Shubhda, S.; Kiran, J.; Singh, V.N.; Sukhvir, S.; Vijayan, N.; Nita, D.; Gupta, G.; Senguttuvan, T.D. Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 2012, 23, 205501. [Google Scholar]
- Wang, Y.; Jiang, X.; Xia, Y. Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions. J. Am. Chem. Soc. 2003, 125, 16176–16177. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Xing, L.; Chen, Y.; Shi, S.; Wang, Y.; Wang, T. Synthesis and H2S Sensing Properties of CuO-SnO2 Core/Shell PN-Junction Nanorods. J. Phys. Chem. C 2008, 112, 12157–12160. [Google Scholar] [CrossRef]
- Domènech-Gil, G.; Barth, S.; Samà, J.; Pellegrino, P.; Gràcia, I.; Cané, C.; Romano-Rodriguez, A. Gas sensors based on individual indium oxide nanowire. Sens. Actuators B Chem. 2017, 238, 447–454. [Google Scholar] [CrossRef]
- Young-Jin, C.; In-Sung, H.; Jae-Gwan, P.; Jin, C.K.; Jae-Hwan, P.; Jong-Heun, L. Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 2008, 19, 095508. [Google Scholar]
- Shi, C.; Ye, H.; Wang, H.; Ioannou, D.E.; Li, Q. Precise gas discrimination with cross-reactive graphene and metal oxide sensor arrays. Appl. Phys. Lett. 2018, 113, 222102. [Google Scholar] [CrossRef]
- Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G.S. High-Performance Sensors Based on Molybdenum Disulfide Thin Films. Adv. Mater. 2013, 25, 6699–6702. [Google Scholar] [CrossRef] [Green Version]
- Shokri, A.; Salami, N. Gas sensor based on MoS2 monolayer. Sens. Actuators B Chem. 2016, 236, 378–385. [Google Scholar] [CrossRef]
- Liu, B.; Chen, L.; Liu, G.; Abbas, A.N.; Fathi, M.; Zhou, C. High Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano 2014, 8, 5304–5314. [Google Scholar] [CrossRef]
- Schalwig, J.; Muller, G.; Eickhoff, M.; Ambacher, O.; Stutzmann, M. Gas sensitive GaN/AlGaN-heterostructures. Sens. Actuators B Chem. 2002, 87, 425–430. [Google Scholar] [CrossRef]
- Makoto, M.; Shu, F.; Takashi, E. Demonstration of NOx gas sensing for Pd/ZnO/GaN heterojunction diodes. J. Vac. Sci. Technol. 2015, 33, 013001. [Google Scholar]
- Song, J.; Lu, W.; Flynn, J.; Brandes, G. Pt-AlGaN/GaN Schottky diodes operated at 800 °C for hydrogen sensing. Appl. Phys. Lett. 2005, 87, 133501. [Google Scholar] [CrossRef]
- Tilak, V.; Matocha, K.; Sandvik, P. Pt/GaN Schottky diodes for harsh environment NO sensing applications. Phys. Status Solidi 2005, 7, 2555–2558. [Google Scholar] [CrossRef]
- Das, A.; Dost, R.; Richardson, T.; Grell, M.; Morrison, J.J.; Turner, M.L. A nitrogen dioxide sensor based on an organic transistor constructed from amorphous semiconducting polymers. Adv. Mater. 2007, 19, 4018–4023. [Google Scholar] [CrossRef]
- Agbor, N.E.; Petty, M.C.; Monkman, A.P. Polyaniline thin films for gas sensing. Sens. Actuators B Chem. 1995, 28, 173–179. [Google Scholar] [CrossRef]
- Yuan, W.; Huang, L.; Zhou, Q.; Shi, G. Ultrasensitive and selective nitrogen dioxide sensor based on self-Assembled Graphene/Polymer composite nanofibers. ACS Appl. Mater. Interfaces 2014, 6, 17003–17008. [Google Scholar] [CrossRef]
- Mekki, A.; Joshi, N.; Singh, A.; Salmi, Z.; Jha PDecorse, P.; Lau-Truong, S.; Mahmoud, R.; Chehimi, M.M.; Aswal, D.K.; Gupta, S.K. H2S sensing using in situ photopolymerized polyaniline-silver nanocomposite films on flexible substrates. Org. Electron. 2014, 15, 71–81. [Google Scholar] [CrossRef]
- Hyodo, T.; Sasahara, K.; Shimizu, Y.; Egashira, M. Preparation of microporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2. Sens. Actuators B Chem. 2005, 106, 580–590. [Google Scholar]
- Liang, X.; Zhong, T.; Quan, B.; Wang, B.; Guan, H. Solid-state potentiometric SO2 sensor combining NASICON with V2O5-doped TiO2 electrode. Sens. Actuators B Chem. 2008, 134, 25–30. [Google Scholar] [CrossRef]
- Giang, H.T.; Duy, H.T.; Ngan, P.Q.; Thai, G.H.; Thu, D.T.A.; Thu, D.T.; Toan, N.N. High sensitivity and selectivity of mixed potential sensor based on Pt/YSZ/SmFeO3 to NO2 gas. Sens. Actuators B Chem. 2013, 183, 550–555. [Google Scholar] [CrossRef]
- Guan, Y.; Yin, C.; Cheng, X.; Liang, X.; Diao, Q.; Zhang, H.; Lu, G. Sub-ppm H2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode. Sens. Actuators B Chem. 2014, 193, 501–508. [Google Scholar] [CrossRef]
- Min, B.; Choi, S. SO2-sensing characteristics of NASICON sensors with Na2SO4–BaSO4 auxiliary electrolytes. Sens. Actuators B Chem. 2003, 93, 209–213. [Google Scholar] [CrossRef]
- Marcu, I.C.; Sandulescu, I. Study of sulfur dioxide adsorption on Y zeolite. J. Serb. Chem. Soc. 2004, 69, 563–569. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Long, Y. Zeolite-based materials for gas sensors. Sensors 2006, 6, 1751–1764. [Google Scholar] [CrossRef]
- Mohan, K.J.; Jagadeesan, K.; Yadav, A. A novel approach for zeolite-based materials for gas sensors. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 6, 1–5. [Google Scholar] [CrossRef]
- Dragan, G. The simultaneous adsorption of sulphur dioxide and carbon dioxide by Y zeolites. Rev. Chim. 2010, 61, 1071–1075. [Google Scholar]
- Ma, J.M.; Mei, L.; Chen, Y.J.; Li, Q.H.; Wang, T.H.; Xu, Z.; Duan, X.C.; Zheng, W.J. Ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H2S gas. Nanoscale 2013, 5, 895–898. [Google Scholar] [CrossRef]
- Swain, S.K.; Barik, S.; Das, R. Nanomaterials as Sensor for Hazardous Gas Detection. In Handbook of Ecomaterials; Martínez, L., Kharissova, O., Kharisov, B., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Hoffmann, M.W.G.; Casals, O.; Gad, A.E.; Mayrhofer, L.; Caccamo, C.F.L.; Hernández-Ramírez, F.; Lilienkamp, G.; Daum, W.; Moseler, M.; Shen, H.; et al. Novel Approaches towards Highly Selective Self-Powered Gas Sensors. Procedia Eng. 2015, 120, 623–627. [Google Scholar] [CrossRef]
- Lahade, S.V.; Pardhi, P.D. Gas Sensing Technologies: Review, Scope and Challenges. Int. J. Recent Trends Eng. Res. 2018, 4, 108–115. [Google Scholar]
- Sharma, S.; Madou, M. Review: A new approach to gas sensing with nanotechnology. Phil. Trans. R. Soc. A 2012, 370, 2448–2473. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.J.; Liu, A.R.; Huang, L.; Li, C.; Shi, G.Q. High Performance NO2 Sensors Based on Chemically Modified Graphene. Adv. Mater. 2013, 25, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Duy, L.T.; Kim, D.-J.; Trung, T.Q.; Dang, V.Q.; Kim, B.-Y.; Moon, H.K.; Lee, N.-E. High Performance Three-Dimensional Chemical Sensor Platform Using Reduced Graphene Oxide Formed on High Aspect-Ratio Micro-Pillars. Adv. Funct. Mater. 2015, 25, 883–890. [Google Scholar] [CrossRef]
- Melios, C.; Panchal, V.; Edmonds, K.; Lartsev, A.; Yakimova, R.; Kazakova, O. Detection of ultra-low concentration NO2 in complex environment using epitaxial graphene sensors. ACS Sens. 2018, 3, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, T.; Zhao, C.; Han, T.; Fei, T.; Liu, S.; Lu, G. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing. J. Colloid Interface Sci. 2018, 514, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Opalka, S.M.; Løvvik, O.M.; Emerson, S.C.; She, Y.; Vanderspurt, T.H. Electronic origins for sulfur interactions with palladium alloys for hydrogen-selective membranes. J. Membr. Sci. 2011, 375, 96–103. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Han, T.; Fei, T.; Liu, S.; Lu, G. Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuators B Chem. 2018, 266, 812–822. [Google Scholar] [CrossRef]
- Akbari, E.; Buntat, Z.; Iqbal, S.M.Z.; Azman, Z.; Sahari, N.; Nawawi, Z.; Jambak, M.I.; Sidik, M.A.B. NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methane Decomposition Technique. TELKOMNIKA 2018, 16, 69–76. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.; Huang, J.; Du, Y.; Ruan, S.C. Reduced Graphene Oxide/Au Nanocomposite for NO2 Sensing at Low Operating Temperature. Sensors 2016, 16, 1152. [Google Scholar] [CrossRef] [PubMed]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Perkins, F.K.; Friedman, A.L.; Cobas, E.; Campbell, P.M.; Jernigan, G.G.; Jonker, B.T. Chemical Vapor Sensing with Monolayer MoS2. Nano Lett. 2013, 13, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Jiang, C.; Wei, S.H. Gas sensing in 2D materials. Appl. Phys. Rev. 2017, 4, 021304. [Google Scholar] [CrossRef]
- Cho, B.; Hahm, M.G.; Choi, M.; Yoon, J.; Kim, A.R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C.S.; Song, M.; et al. Charge transfer-based Gas Sensing Using Atomic-layer MoS2. Sci. Rep. 2015, 5, 8052. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Yang, G.; Bao, J.; Kumar, M.; Kumar, M. Photoactivated Mixed In-Plane and Edge-Enriched p-Type MoS2 Flake-Based NO2 Sensor Working at Room Temperature. ACS Sens. 2018, 3, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Goel, N.; Kumar, M. High performance NO2 sensor using MoS2 nanowires network. Appl. Phys. Lett. 2018, 112, 053502. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kim, Y.; Chung, H.-S.; Kim, A.R.; Kwon, J.-D.; Park, J.; Kim, Y.L.; Kwon, S.; Hahm, M.G.; Cho, B. Effect of Nb Doping on Chemical Sensing Performance of Two-Dimensional Layered MoSe2. ACS Appl. Mater. Interfaces 2017, 9, 3817–3823. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.Y.; Song, J.-G.; Kim, Y.; Choi, T.; Shin, S.; Lee, C.W.; Lee, K.; Koo, J.; Lee, H.; Kim, J.; et al. Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. ACS Nano 2016, 10, 9287–9296. [Google Scholar] [CrossRef]
- Gönüllü, Y.; Rodríguez, G.C.M.; Saruhan, B.; Ürgen, M. Improvement of gas sensing performance of TiO2 towards NO2 by nano-tubular structuring. Sens. Actuators B Chem. 2012, 169, 151–160. [Google Scholar] [CrossRef]
- Vyas, R.; Sharma, S.; Gupta, P.; Vijay, Y.K.; Prasad, A.K.; Tyagi, A.K.; Sachdev, K.; Sharma, S.K. Enhanced NO2 sensing using ZnO–TiO2 nanocomposite thin films. J. Alloy. Compd. 2013, 554, 59–63. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, D.; Zhu, Q.; Wu, J.; Huang, Q.; Xie, C. Effect of Nickel Vacancies on the Room-Temperature NO2 Sensing Properties of Mesoporous NiO Nanosheets. J. Phys. Chem. C 2016, 120, 3936–3945. [Google Scholar] [CrossRef]
- Postica, V.; Gröttrup, J.; Adelung, R.; Lupan, O.; Mishra, A.K.; de Leeuw, N.H.; Ababii, N.; Carreira, J.F.C.; Rodrigues, J.; Sedrine, N.B.; et al. Nanosensors: Multifunctional Materials: A Case Study of the Effects of Metal Doping on ZnO Tetrapods with Bismuth and Tin Oxides. Adv Funct. Mater. 2017, 27, 1604676. [Google Scholar] [CrossRef]
- Qiang, X.; Hu, M.; Zhao, B.; Qin, Y.; Yang, R.; Zhou, L.; Qin, Y. Effect of the Functionalization of Porous Silicon/WO3 Nanorods with Pd Nanoparticles and Their Enhanced NO2-Sensing Performance at Room Temperature. Materials 2018, 11, 764. [Google Scholar] [CrossRef] [PubMed]
- Ievlev, V.M.; Ryabtsev, S.V.; Samoylov, A.M.; Shaposhnik, A.V.; Kuschev, S.B.; Sinelnikov, A.A. Thin and ultrathin films of palladium oxide for oxidizing gases detection. Sens. Actuators B Chem. 2018, 255, 1335–1342. [Google Scholar] [CrossRef]
- Navale, Y.H.; Navale, S.T.; Ramgir, N.S.; Stadler, F.J.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sens. Actuators B Chem. 2017, 251, 551–563. [Google Scholar] [CrossRef]
- Benedict, S.; Singh, M.; Naik, T.R.R.; Shivashankar, S.A.; Bhat, N. Microwave-Synthesized NiO as a Highly Sensitive and Selective Room-Temperature NO2 Sensor. ECS J. Solid State Sci. Technol. 2018, 7, Q3143–Q3147. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Kim, D.-H.; Hong, S.-H. CuBi2O4 Prepared by the Polymerized Complex Method for Gas Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 14901–14913. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.M.; Phuong, H.V.; Duy, N.V.; Hoa, N.D.; Hieu, N.V. Comparative effects of synthesis parameters on the NO2 gas-sensing performance of on-chip grown ZnO and Zn2SnO4 nanowire sensors. J. Alloy. Compd. 2018, 765, 1237–1242. [Google Scholar] [CrossRef]
- Aluri, G.S.; Motayed, A.; Davydov, A.V.; Oleshko, V.P.; Bertness, K.A.; Rao, M.V. Nitro-Aromatic Explosive Sensing Using GaN Nanowire-Titania Nanocluster Hybrids. IEEE Sens. J. 2013, 13, 1883–1888. [Google Scholar] [CrossRef]
- Aluri, G.S.; Motayed, A.; Bertness, K.; Sanford, N.; Oleshko, V.; Davydov, A.; Rao, M.V. Highly selective GaN-nanowire/TiO2 nanocluster hybrid sensors for detection of benzene and related environmental pollutants. Nanotechnology 2011, 22, 295503. [Google Scholar] [CrossRef] [PubMed]
- Aluri, G.S.; Motayed, A.; Davydov, A.V.; Oleshko, V.; Bertness, K.; Sanford, N.; Rao, M.V. GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of Benzene and related aromatic compounds. Proc. SPIE 2011, 8024, 80240M. [Google Scholar]
- Aluri, G.S.; Motayed, A.; Bertness, K.; Sanford, N.; Oleshko, V.; Davydov, A.; Rao, M.V. Methanol, Ethanol, and Hydrogen Sensing using Metal-Oxide and Metal (TiO2-Pt) Composite Nanoclusters on GaN Nanowires: A New Route towards Tailoring the Selectivity of Nanowire/Nanocluster Chemical Sensors. Nanotechnology 2012, 23, 17550. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Salvestrini, J.P.; Halfaya, Y.; Sundaram, S.; el Gmili, Y.; Pradere, L.; Marteau, J.Y.; Assouar, M.B.; Voss, P.L.; Ougazzaden, A. Highly sensitive detection of NO2 gas using BGaN/GaN superlattice-based double Schottky junction sensors. Appl. Phys. Lett. 2015, 106, 243504. [Google Scholar] [CrossRef]
- Halfaya, Y.; Bishop, C.; Soltani, A.; Sundaram, S.; Aubry, V.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems. Sensors 2016, 16, 273. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Mills, S.; Lee, B.; Misra, V. Application of AlGaN/GaN Heterostructures for Ultra-Low Power Nitrogen Dioxide Sensing. ECS J. Solid State Sci. Technol. 2015, 4, S3034–S3037. [Google Scholar] [CrossRef] [Green Version]
- Lv, A.; Pan, Y.; Chi, L. Gas Sensors Based on Polymer Field-Effect Transistors. Sensors 2017, 17, 213. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jha, P.; Singh, A.; Chauhan, A.K.; Gupta, S.K.; Aswal, D.K.; Muthe, K.P.; Gadkari, S.C. Modeling of gate bias controlled NO2 response of the PCDTBT based organic field effect transistor. Chem. Phys. Lett. 2018, 698, 7–10. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Zhu, X.; Zhou, X.; Chi, L. An Ultrasensitive Organic Semiconductor NO2 Sensor Based on Crystalline TIPS-Pentacene Films. Adv. Mater. 2017, 29, 1703192. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhuang, X.; Melkonyan, F.S.; Wang, B.; Zeng, L.; Wang, G.; Han, S.; Bedzyk, M.J.; Yu, J.; Marks, T.J.; et al. UV–Ozone Interfacial Modification in Organic Transistors for High-Sensitivity NO2 Detection. Adv. Mater. 2017, 29, 1701706. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Jiao, W.; Ding, G.; Hao, L.; Yang, F.; He, X. MoS2 graphene fiber-based gas sensing devices. Carbon 2015, 95, 34–41. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Zhao, C.; Han, T.; Fei, T.; Liu, S.; Lu, G. Rational synthesis of molybdenum disulfide nanoparticles decorated reduced graphene oxide hybrids and their application for high-performance NO2 sensing. Sens. Actuators B Chem. 2018, 260, 508–518. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Xia, Y.; Komarneni, S.; Chen, H.; Xu, J.; Xiang, L.; Xie, D. Hierarchical ZnO Nanosheet-Nanorod Architectures for Fabrication of Poly(3-hexylthiophene)/ZnO Hybrid NO2 Sensor. ACS Appl. Mater. Interfaces 2016, 8, 8600–8607. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, C.; Han, T.; Zhang, Y.; Liu, S.; Fei, T.; Lu, G.; Zhang, T. High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 2017, 242, 269–279. [Google Scholar] [CrossRef]
- Kim, H.W.; Na, H.G.; Kwon, Y.J.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Wu, P.; Kim, S.S. Microwave-Assisted Synthesis of Graphene-SnO2 Nanocomposites and Their Applications in Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 31667–31682. [Google Scholar] [CrossRef] [PubMed]
- Tammanoon, N.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Ultrasensitive NO2 Sensor Based on Ohmic Metal-Semiconductor Interfaces of Electrolytically Exfoliated Graphene/Flame-Spray-Made SnO2 Nanoparticles Composite Operating at Low Temperatures. ACS Appl. Mater. Interfaces 2015, 7, 24338–24352. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Guo, J.; Sun, J.; Tang, P.; Chen, A.; Luo, R.; Li, D. Enhancement of NO2-Sensing Performance at Room Temperature by Graphene-Modified Polythiophene. Ind. Eng. Chem. Res. 2016, 55, 5788–5794. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Kang, S.Y.; Wu, P.; Peng, Y.; Kim, S.S.; Kim, H.W. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation. ACS Appl. Mater. Interfaces 2016, 8, 13646–13658. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Goel, N.; Kumar, M. UV-Activated MoS2 Based Fast and Reversible NO2 Sensor at Room Temperature. ACS Sens. 2017, 2, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q.; Wang, Y.; Lu, G. Ultrasensitive and low detection limit of nitrogen dioxide gas sensor based on flower-like ZnO hierarchical nanostructure modified by reduced graphene oxide. Sens. Actuators B Chem. 2017, 249, 715–724. [Google Scholar] [CrossRef]
- Long, H.; Trochimczyk, A.H.; Pham, T.; Zettl, A.; Carraro, C.; Worsley, M.A.; Maboudian, R. High Surface Area 3D MoS2/Graphene Hybrid Aerogel for Ultrasensitive NO2 Detection. Adv. Funct. Mater. 2016, 26, 5158–5165. [Google Scholar] [CrossRef]
- Betty, C.A.; Choudhury, S.; Arora, S. Tin oxide–polyaniline heterostructure sensors for highly sensitive and selective detection of toxic gases at room temperature. Sens. Actuators B Chem. 2015, 220, 288–294. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Yang, W.; Yuan, W.; Xu, J.; Jiang, Y. In Situ Polymerization Deposition of Porous Conducting Polymer on Reduced Graphene Oxide for Gas Sensor. ACS Appl. Mater. Interfaces 2014, 6, 13807–13814. [Google Scholar] [CrossRef] [PubMed]
- Popp, A.; Yilmazoglu, O.; Kaldirim, O.; Schneider, J.J.; Pavlidis, D. A self-supporting monolith of highly aligned carbon nanotubes as device structure for sensor applications. Chem. Comm. 2009, 22, 3205–3207. [Google Scholar] [CrossRef] [PubMed]
- Zouaghi, W.; Hussein, L.; Tomson, M.D.; Islam, Q.; Nicoloso, N.; Heinlein, T.; Engstler, J.; Schneider, J.J.; Roskos, H.G. Towards gas sensing with vertically aligned carbon nanotubes interrogated by thz radiation pulses. Lith. J. Phys. 2018, 58, 38–48. [Google Scholar] [CrossRef]
- Petryshak, V.; Mikityuk, Z.; Vistak, M.; Gotra, Z.; Akhmetova, A.; Wójcik, W.; Assembay, A. Highly sensitive active medium of primary converter SO2 sensors based on cholesteric-nematic mixtures, doped by carbon nanotubes. Przeglad Elektrotech. 2017, 1, 119–122. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, J.; Jiang, C.; Li, P.; Sun, Y. High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. Sens. Actuators B Chem. 2017, 245, 560–567. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- West, D.L.; Montgomery, F.C.; Armstrong, B.L. Compact, DC-electrical biased sulfur dioxide sensing elements for use at high temperatures. Sens. Actuators B Chem. 2012, 162, 409–417. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Chen, Y.; Zhang, Y.; Gao, X.; Xu, P.; Li, X.; Fang, J.; Wen, W. An integrated micro-chip with Ru/Al2O3/ZnO as sensing material for SO2 detection. Sens. Actuators B Chem. 2018, 262, 26–34. [Google Scholar] [CrossRef]
- Ciftyürek, E.; Sabolsky, K.; Sabolsky, E.M. Molybdenum and tungsten oxide-based gas sensors for high temperature detection of environmentally hazardous sulfur species. Sens. Actuators B Chem. 2016, 237, 262–274. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor. Sens. Actuators B Chem. 2016, 224, 282–289. [Google Scholar] [CrossRef]
- Haridas, D.; Chowdhuri, A.; Sreenivas, K.; Gupta, V. Effect of thickness of platinum catalyst clusters on response of SnO2 thin film sensor for LPG. Sens. Actuators B Chem. 2011, 153, 89–95. [Google Scholar] [CrossRef]
- Das, S.; Rana, S.; Mursalin, S.M.; Rana, P.; Sen, A. Sonochemically prepared nanosized BiFeO3 as novel SO2 sensor. Sens. Actuators B Chem. 2015, 218, 122–127. [Google Scholar] [CrossRef]
- Stephen, J.P.; Cammy, R.A.; Ren, F. Gallium Nitride Processing for Electronics, Sensors and Spintronics, 1st ed.; Springer: London, UK, 2006. [Google Scholar]
- Anderson, T.; Ren, F.; Pearton, S.; Kang, B.S.; Wang, H.-T.; Chang, C.-Y.; Lin, J. Advances in Hydrogen, Carbon Dioxide, and Hydrocarbon Gas Sensor Technology Using GaN and ZnO-Based Devices. Sensors 2009, 9, 4669–4694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triet, N.M.; Duy, L.T.; Hwang, B.-U.; Hanif, A.; Siddiqui, S.; Park, K.; Cho, C.; Lee, N. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer. ACS Appl. Mater. Interfaces 2017, 9, 30722–30732. [Google Scholar] [CrossRef]
- Jeong, H.Y.; Lee, D.-S.; Choi, H.K.; Lee, D.H.; Kim, J.-E.; Lee, J.Y.; Lee, W.J.; Kim, S.O.; Choi, S.-Y. Flexible Room-Temperature NO2 Gas Sensors Based on Carbon Nanotubes/Reduced Graphene Hybrid Films. Appl. Phys. Lett. 2010, 96, 213105. [Google Scholar] [CrossRef]
- Wang, L.; Kumar, R.V. A SO2 gas sensor based upon composite NASICON/Sr--Al2O3 bielectrolyte. Mater. Res. Bull. 2005, 40, 1802–1815. [Google Scholar] [CrossRef]
- Suganuma, S.; Watanabe, M.; Kobayashi, T.; Wakabayashi, S. SO2 gas sensor utilizing stabilized zirconia and sulfate salts with a new working mechanism. Solid State Ionics 1999, 126, 175–179. [Google Scholar] [CrossRef]
- Wang, L.; Kumar, R.V. A new SO2 gas sensor based on an Mg2+ conducting solid electrolyte. J. Electroanal. Chem. 2003, 543, 109–114. [Google Scholar] [CrossRef]
- Ma, C.; Hao, X.; Yang, X.; Liang, X.; Liu, F.; Liu, T.; Yang, C.; Zhu, H.; Lu, G. Sub-ppb SO2 gas sensor based on NASICON and LaxSm1−xFeO3 sensing electrode. Sens. Actuators B Chem. 2018, 256, 648–655. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Wang, B.; Yang, X.; Wang, Q.; Liang, X.; Sun, P.; Chuai, X.; Wang, Y.; Lu, G. Stabilized zirconia-based mixed potential type sensors utilizing MnNb2O6 sensing electrode for detection of low-concentration SO2. Sens. Actuators B Chem. 2017, 238, 1024–1031. [Google Scholar] [CrossRef]
- Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Zeolite Science and Technology; Marcel Dekker, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Yimlamai, I.; Niamlang, S.; Chanthaanont, P.; Kunanuraksapong, R.; Changkhamchom, S.; Sirivat, A. Electrical conductivity response and sensitivity of ZSM-5, Y, and mordenite zeolites towards ethanol vapor. Ionics 2011, 17, 607–615. [Google Scholar] [CrossRef]
- Choeichom, P.; Sirivat, A. Discriminative sensing performances of ZSM-5, Y, mordenite, ferrierite, beta, 3A, 4A, 5A, and 13X zeolites towards sulfur dioxide. Ionics 2018, 24, 2829–2841. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Huang, L.; Gao, J.; Zhou, H.; Shi, Y.; Pan, Q.; Zhang, G.; Du, Y.; Liang, W. Sulfur dioxide gas-sensitive materials based on zeolitic imidazolate framework-derived carbon nanotubes. J. Mater. Chem. A 2018, 6, 12115–12124. [Google Scholar] [CrossRef]
- Chanthaanont, P.; Permpool, T.; Sirivat, A. Effect of alkaline and alkaline earth ion exchanged Y zeolites on electrical conductivity and response of PEDOT-PSS/Y zeolite composites toward SO2. Mater. Technol. 2015, 30, 193–199. [Google Scholar] [CrossRef]
- Lim, S.H.; Feng, L.; Kemling, J.W.; Musto, C.J.; Suslick, K.S. An Optoelectronic Nose for Detection of Toxic Gases. Nat. Chem. 2009, 1, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Duan, H.; Ma, Y.; Deng, W. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine. Anal. Chem. 2018, 90, 5719–5727. [Google Scholar] [CrossRef]
- Wang, M.; Guo, L.; Cao, D. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect. Anal. Chem. 2018, 90, 3608–3614. [Google Scholar] [CrossRef]
- Liu, C.-C.; Wang, Y.-N.; Fu, L.-M.; Yang, D.-Y. Rapid integrated microfluidic paper-based system for sulfur dioxide detection. Chem. Eng. J. 2017, 316, 790–796. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kaur, A. Solitary surfactant assisted morphology dependent chemiresistive polyaniline sensors for room temperature monitoring of low parts per million sulfur di oxide. Polym. Int. 2015, 64, 1475–1481. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kaur, A. Enhanced room temperature sulfur dioxide sensing behaviour of in situ polymerized polyaniline-tungsten oxide nanocomposite possessing honeycomb morphology. RSC Adv. 2015, 5, 73535–73544. [Google Scholar] [CrossRef]
- Betty, C.A.; Choudhury, S. Charge carrier transport in nanocrystalline SnO2 thin film sensor and temperature dependence of toxic gas sensitivity. Sens. Actuators B Chem. 2016, 237, 787–794. [Google Scholar] [CrossRef]
- Gaiardo, A.; Fabbri, B.; Giberti, A.; Guidi, V.; Bellutti, P.; Malagù, C.; Valt, M.; Pepponi, G.; Gherardi, S.; Zonta, G.; et al. ZnO and Au/ZnO thin films: Room-temperature chemoresistive properties for gas sensing applications. Sens. Actuators B Chem. 2016, 237, 1085–1094. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Chen, D.; Jiang, Z. A new potentiometric SO2 sensor based on Li3PO4 electrolyte film and its response characteristics. Rev. Sci. Instrum. 2015, 86, 075007. [Google Scholar] [CrossRef] [PubMed]
- Mulmi, S.; Thangadurai, V. Semiconducting SnO2-TiO2 (ST) composites for detection of SO2 gas. Ionics 2016, 22, 1927–1935. [Google Scholar] [CrossRef]
- Chen, A.M.; Liu, R.; Peng, X.; Chen, Q.; Wu, J. 2D Hybrid Nanomaterials for Selective Detection of NO2 and SO2 Using “Light On and Off” Strategy. ACS Appl. Mater. Interfaces 2017, 9, 37191. [Google Scholar] [CrossRef]
- Chaudhary, V.; Singh, H.K.; Kaur, A. Effect of charge carrier transport on sulfur dioxide monitoring performance of highly porous polyaniline nanofibers. Polym. Int. 2017, 66, 699. [Google Scholar] [CrossRef]
- Ovsianytskyi, O.; Nam, Y.-S.; Tsymbalenko, O.; Lan, P.; Moon, M.; Lee, K. Highly sensitive chemiresistive H2S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities. Sens. Actuators B Chem. 2018, 257, 278–285. [Google Scholar] [CrossRef]
- Chu, J.; Wang, X.; Wang, D.; Yang, A.; Lv, P.; Wu, Y.; Rong, M.; Gao, L. 3 Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide. Carbon 2018, 135, 95–103. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Chen, C. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors. Nanotechnology 2018, 29, 275501. [Google Scholar] [CrossRef]
- Sokolovskij, R.; Zhangb, J.; Iervolino, E.; Zhao, C.; Santagata, F.; Wang, F.; Yu, H.; Sarro, P.M.; Zhang, G.Q. Hydrogen sulfide detection properties of Pt-gated AlGaN/GaN HEMT-sensor. Sens. Actuators B Chem. 2018, 274, 636–644. [Google Scholar] [CrossRef]
- Lo, C.-F.; Xi, Y.; Liu, L.; Pearton, S.J.; Doré, S.; Hsu, C.-H.; Dabiran, A.M.; Chow, P.P.; Ren, F. Effect of temperature on CO sensing response in air ambient by using ZnO nanorod-gated AlGaN/GaN high electron mobility transistors. Sens. Actuators B Chem. 2013, 176, 708–712. [Google Scholar] [CrossRef]
- Chen, T.Y.; Chen, H.I.; Hsu, C.S.; Huang, C.C.; Chang, C.F.; Chou, P.C.; Liu, W.C. On an Ammonia gas sensor based on a Pt/AlGaN heterostructure field-effect transistor. IEEE Electron Device Lett. 2012, 33, 612–614. [Google Scholar]
- Son, K.A.; Yang, B.; Prokopuk, N.; Moon, J.S.; Liao, A.; Katona, T.M.; Khan, M.A. RF GaN HEMT sensors for detection of caustic chemicals. IEEE Sens. J. 2011, 11, 3476–3478. [Google Scholar] [CrossRef]
- Zhanga, J.; Sokolovskijb, R.; Chen, G.; Zhu, Y.; Qi, Y.; Lin, X.; Li, W.; Zhang, G.Q.; Jiang, Y.; Yu, H. Impact of high temperature H2 pre-treatment on Pt-AlGaN/GaN HEMT sensor for H2S detection. Sens. Actuators B Chem. 2018, 280, 138–143. [Google Scholar] [CrossRef]
- Shukla, G.P.; Bhatnagar, M.C. H2S gas sensor based on Cu doped SnO2 nanostructure. J. Mater. Sci. Eng. A 2014, 4. [Google Scholar] [CrossRef]
- Hosseini, Z.S.; zad, A.I.; Mortezaali, A. Room temperature (24.0 ± 1 °C) H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens. Actuators B Chem. 2015, 207, 865–871. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Zhang, S.; Chen, W.; Kuang, Z.; Ao, D.; Liu, W.; Fu, Y. A fast response & recovery H2S gas sensor based on α-Fe2O3 nanoparticles with ppb level detection limit. J. Hazard. Mater. 2015, 300, 167–174. [Google Scholar] [PubMed]
- Zhang, H.-J.; Meng, F.-N.; Liu, L.-Z.; Chen, Y.-J. Convenient route for synthesis of alpha-Fe2O3 and sensors for H2S gas. J. Alloy. Compd. 2019, 774, 1181–1188. [Google Scholar] [CrossRef]
- Li, D.; Qin, L.; Zhao, P.; Zhang, Y.; Liu, D.; Liu, F.; Kang, B.; Wang, Y.; Song, H.; Zhang, T.; et al. Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sens. Actuators B Chem. 2018, 254, 834–841. [Google Scholar] [CrossRef]
- Li, Z.; Yan, S.; Zhang, S.; Wang, J.; Shen, W.; Wang, Z.; Fu, Y.Q. Ultra-sensitive UV and H2S dual functional sensors based on porous In2O3 nanoparticles operated at room temperature. J. Alloy. Compd. 2019, 770, 721–731. [Google Scholar] [CrossRef]
- Huang, H.; Xu, P.; Zheng, D.; Chen, C.; Li, X. Sulfuration-desulfuration reaction sensing-effect of intrinsic ZnO nanowires for high-performance H2S detection. J. Mater. Chem. A 2015, 3, 6330–6339. [Google Scholar] [CrossRef]
- Eoma, N.S.A.; Chob, H.-B.; Song, Y.; Go, G.M.; Lee, J.; Choa, Y. Room-temperature H2S gas sensing by selectively synthesized Cux(x=1,2)O:SnO2 thin film nanocomposites with oblique & vertically assembled SnO2 ceramic nanorods. Sens. Actuators B Chem. 2018, 273, 1054–1061. [Google Scholar]
- Stanoiu, A.; Piticescu, R.M.; Simion, C.E.; Rusti-Ciobota, C.; Florea, O.; Teodorescu, V.; Osiceanu, P.; Sobetkii, A.; Badilita, V. H2S selective sensitivity of Cu doped BaSrTiO3 under operando conditions and the associated sensing mechanism. Sens. Actuators B Chem. 2018, 264, 327–336. [Google Scholar] [CrossRef]
- Quang, P.L.; Cuong, N.D.; Hoa, T.T.; Long, H.T.; Hung, C.M.; Le, D.T.T.; Hieu, N.V. Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sens. Actuators B Chem. 2018, 270, 158–166. [Google Scholar] [CrossRef]
- Stanoiu, A.; Simion, C.E.; Calderon-Moreno, J.M.; Osiceanu, P.; Florea, M.; Teodorescu, V.S.; Somacescu, S. Sensors based on mesoporous SnO2-CuWO4 with high selective sensitivity to H2S at low operating temperature. J. Hazard. Mater. 2017, 331, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhu, Z.; Li, Z.; Xie, L.; Wu, Y.; Zheng, L. Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor. Sens. Actuators B Chem. 2018, 264, 139–149. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Zhu, Y.; Xie, W.; Shao, R.; Yao, X.; Gao, A.; Yin, Y. Cd2+-Doped Amorphous TiO2 Hollow Spheres for Robust and Ultrasensitive Photoelectrochemical Sensing of Hydrogen Sulfide. Anal. Chem. 2018, 90, 5496–5502. [Google Scholar] [CrossRef]
- Yassine, O.; Shekhah, O.; Assen, A.H.; Belmabkhout, Y.; Salama, K.N.; Eddaoudi, M. H2S sensors: Fumarate-based fcu-MOF thin film grown on a capacitive interdigitated electrode. Angew. Chem. Int. Ed. 2016, 55, 15879–15883. [Google Scholar] [CrossRef]
- Guo, L.; Wang, M.; Cao, D. A Novel Zr-MOF as Fluorescence Turn-On Probe for Real-Time Detecting H2S Gas and Fingerprint Identification. Small 2018, 14, 1703822. [Google Scholar] [CrossRef]
- Dong, X.; Su, Y.; Lu, T.; Zhang, L.; Wu, L.; Lv, Y. MOFs-derived dodecahedra porous Co3O4: An efficient cataluminescence sensing material for H2S. Sens. Actuators B Chem. 2018, 258, 349–357. [Google Scholar] [CrossRef]
- Chaudhary, N.; Singh, A.; Debnath, A.K.; Acharya, S.; Aswal, D.K. Electron beam modified organic materials and their applications. Solid State Phenom. 2015, 239, 72–97. [Google Scholar] [CrossRef]
- Chaudhary, N.; Singh, A.; Aswal, D.K.; Jha, P.; Samanta, S.; Chauhan, A.; Debnath, A.; Acharya, S.; Shah, K.; Muthe, K.; et al. Electron beam induced modifications of polyaniline silver nano-composite films: Electrical conductivity and H2S gas sensing studies. Radiat. Phys. Chem. 2018, 153, 131–139. [Google Scholar] [CrossRef]
- Abu-Hani, A.F.; Greish, Y.E.; Mahmoud, S.T.; Awwad, F.; Ayesh, A.I. Low-temperature and fast response H2S gas sensor using semiconducting chitosan film. Sens. Actuators B Chem. 2017, 253, 677–684. [Google Scholar] [CrossRef]
- Shu, J.; Qiu, Z.; Lv, S.; Zhang, K.; Tang, D. Cu2+-Doped SnO2 Nanograin/Poly pyrrole Nanospheres with Synergic Enhanced Properties for Ultrasensitive Room-Temperature H2S Gas Sensing. Anal. Chem. 2017, 89, 11135–11142. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Ma, C.; Yang, X.; Liu, T.; Wang, B.; Liu, F.; Liang, X.; Yang, C.; Zhu, H.; Lu, G. YSZ-based mixed potential H2S sensor using La2NiO4 sensing electrode. Sens. Actuators B Chem. 2018, 255, 3033–3039. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Hao, X.; Song, Y.; Liang, X.; Liu, F.; Sun, P.; Gao, Y.; Yan, X.; Lu, G. Nafion-based amperometric H2S sensor using Pt Rh/C sensing electrode. Sens. Actuators B Chem. 2018, 273, 635–641. [Google Scholar] [CrossRef]
- Asres, G.A.; Baldoví, J.J.; Dombovari, A.; Järvinen, T.; Lorite, G.S.; Mohl, M.; Shchukarev, A.; Paz, A.P.; Xian, L.; Mikkola, J.; et al. Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res. 2018, 11, 4215–4224. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, W.; Zhu, H. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2. J. Chem. Phys. 2015, 142, 214704. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Jain, N.; Sharma, K.; Bhattacharya, S.; Roy, M.; Tyagi, A.K.; Gupta, S.K.; Yakhmi, J.V. Room temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sens. Actuator. B Chem. 2008, 133, 456–461. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X.; Cheng, X.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Hierarchical NiO Cube/Nitrogen-Doped Reduced Graphene Oxide Composite with Enhanced H2S Sensing Properties at Low Temperature. ACS Appl. Mater. Interfaces 2017, 9, 26293–26303. [Google Scholar] [CrossRef]
- Shi, J.; Cheng, Z.; Gao, L.; Zhang, Y.; Xu, J.; Zhao, H. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 2016, 230, 736–745. [Google Scholar] [CrossRef]
- Balouria, V.; Ramgir, N.S.; Singh, A.; Debnath, A.K.; Mahajan, A.; Bedi, R.K.; Aswal, D.K.; Gupta, S.K. Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films. Sens. Actuators B Chem. 2015, 219, 125–132. [Google Scholar] [CrossRef]
- Li, Z.J.; Lin, Z.J.; Wang, N.N.; Huang, Y.W.; Wang, J.Q.; Liu, W.; Fu, Y.Q.; Wang, Z.G. Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection. Mater. Des. 2016, 110, 532–539. [Google Scholar] [CrossRef]
- Kheel, H.; Sun, G.J.; Lee, J.K.; Lee, S.; Dwivedi, R.P.; Lee, C. Enhanced H2S sensing performance of TiO2-decorated α-Fe2O3 nanorod sensors. Ceram. Int. 2016, 42, 18597–18604. [Google Scholar] [CrossRef]
- Benedict, S.; Lumdee, C.; Dmitriev, A.; Anand, S.; Bhat, N. Colloidal lithography nanostructured Pd/PdOx core–shell sensor for ppb level H2S detection. Nanotechnology 2018, 29, 255502. [Google Scholar] [CrossRef]
- Gao, X.; Sun, Y.; Zhu, C.; Li, C.; Ouyang, Q.; Chen, Y. Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets. Sens. Actuators B Chem. 2017, 246, 662–672. [Google Scholar] [CrossRef]
- Fu, D.; Zhu, C.; Zhang, X.; Li, C.; Chen, Y. Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J. Mater. Chem. A 2016, 4, 1390–1398. [Google Scholar] [CrossRef]
- Gao, C.; Lin, Z.-D.; Li, N.; Fu, P.; Wang, X.-H. Preparation and H2S Gas-Sensing Performances of Coral Like SnO2–CuO Nanocomposite. Acta Metall. Sin. (Engl. Lett.) 2015, 28, 1190–1197. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, F.; Liu, J.; Wang, Y.; Zhou, J.; Ruan, S. Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens. Actuators B Chem. 2015, 209, 515–523. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Xiao, S.; Wang, X.; Sun, L.; Li, H.; Xie, W.; Li, Q.; Zhang, Q.; Wang, T. Low-Temperature H2S Detection with Hierarchical Cr-Doped WO3 Microspheres. ACS Appl. Mater. Interfaces 2016, 8, 9674–9683. [Google Scholar] [CrossRef]
- Tian, J.; Pan, F.; Xue, R.; Zhang, W.; Fang, X.; Liu, Q.; Wang, Y.; Zhang, Z.; Zhang, D. A highly sensitive room temperature H2S gas sensor based on SnO2 multi-tube arrays bio-templated from insect bristles. Dalton Trans. 2015, 44, 7911–7916. [Google Scholar] [CrossRef]
- Yu, T.; Cheng, X.; Zhang, X.; Sui, L.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Highly sensitive H2S detection sensors at low temperature based on hierarchically structured NiO porous nanowall arrays. J. Mater. Chem. A 2015, 3, 11991–11999. [Google Scholar] [CrossRef]
- Asad, M.; Sheikhi, M.H.; Pourfath, M.; Moradi, M. High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs. Sens. Actuators B Chem. 2015, 210, 1–8. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Lin, Z.; Wang, J.; Liu, W.; Sun, K.; Fu, Y.Q.; Wang, Z. Room-Temperature High-Performance H2S Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method. ACS Appl. Mater. Interfaces 2016, 8, 20962–20968. [Google Scholar] [CrossRef]
- Su, P.; Peng, Y. Fabrication of a room-temperature H2S gas sensor based on ppy/WO3 nanocomposite films by in-situ photopolymerization. Sens. Actuator. B Chem. 2014, 193, 637–643. [Google Scholar] [CrossRef]
- Choi, S.; Jang, B.; Lee, S.; Min, B.K.; Rothschild, A.; Kim, I. Selective detection of acetone and hydrogen sulfide for the diagnosis of diabetes and halitosis using SnO2 nanofibers functionalized with reduced graphene oxide nanosheets. ACS Appl. Mater. Interface 2014, 6, 2588–2597. [Google Scholar] [CrossRef]
- Chen, X.-P.; Wang, L.-M.; Sun, X.; Meng, R.-S.; Xiao, J.; Ye, H.-Y.; Zhang, G.-Q. Sulfur Dioxide and Nitrogen Dioxide Gas Sensor Based on Arsenene: A First-Principle Study. IEEE Electron. Device Lett. 2017, 38, 661–664. [Google Scholar] [CrossRef]
- Mao, Y.; Long, L.; Yuan, J.; Zhong, J.; Zhao, H. Toxic gases molecules (NH3, SO2 and NO2) adsorption on GeSe monolayer with point defects engineering. Chem. Phys. Lett. 2018, 706, 501–508. [Google Scholar] [CrossRef]
- Huang, C.-S.; Murat, A.; Babar, V.; Montes, E.; Schwingenschlögl, U. Adsorption of the Gas Molecules NH3, NO, NO2, and CO on Borophene. J. Phys. Chem. C 2018, 122, 14665–14670. [Google Scholar] [CrossRef]
- Cui, H.; Zheng, K.; Zhang, Y.; Ye, H.; Chen, X. Superior Selectivity and Sensitivity of C3N Sensor in Probing Toxic Gases NO2 and SO2. IEEE Electron. Device Lett. 2018, 39, 284–287. [Google Scholar] [CrossRef]
- Niu, F.; Yang, D.; Cai, M.; Li, X.; Liu, D. A First Principles Study of Blue Phosphorene as A Superior Media for Gas Sensor. ICEPT 2018, 1149–1152. [Google Scholar] [CrossRef]
- Ingale, N.; Konda, R.; Chaudhari, A. Organolithium complex as a gas sensing material for oxides from ab initio calculations and molecular dynamics simulations. Int. J. Quantum Chem. 2018, 118, e25623. [Google Scholar] [CrossRef]
- Wei, H.; Gui, Y.; Kang, J.; Wang, W.; Tang, C. A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials 2018, 8, 646. [Google Scholar] [CrossRef]
- Hussain, T.; Kaewmaraya, T.; Chakraborty, S.; Vovusha, H.; Amornkitbamrung, V.; Ahuja, R. Defected and Functionalized Germanene-based Nanosensors under Sulfur Comprising Gas Exposure. ACS Sens. 2018, 3, 867–874. [Google Scholar] [CrossRef]
- Liao, T.; Kou, L.; Du, A.; Chen, L.; Cao, C.; Sun, Z. H2S Sensing and Splitting on Atom-Functionalized Carbon Nanotubes: A Theoretical Study. Adv. Theory Simul. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Yong, Y.; Su, X.; Cui, H.; Zhou, Q.; Kuang, Y.; Li, X. Two-Dimensional Tetragonal GaN as Potential Molecule Sensors for NO and NO2 Detection: A First-Principle Study. ACS Omega 2017, 2, 8888–8895. [Google Scholar] [CrossRef]
- Yong, Y.; Cui, H.; Zhou, Q.; Su, X.; Kuang, Y.; Li, X. Adsorption of gas molecules on a graphitic GaN sheet and its implications for molecule sensors. RSC Adv. 2017, 7, 51027. [Google Scholar] [CrossRef]
- Spinelle, L.; Aleixandre, M.; Gerboles, M. Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the Monitoring of air Pollution; JRC Technical Reports (JRC83791); Publications Office of the European Union: Brussels, Belgium, 2013. [Google Scholar]
- Monroy, J.G.; Lilienthal, A.; Blanco, J.L.; González-Jimenez, J.; Trincavelli, M. Calibration of MOX gas sensors in open sampling systems based on Gaussian Processes. Sensors 2012, 2012, 1–4. [Google Scholar]
- Perma Pure, L.L.C. Gas Sensor Calibration, Chapter 11. In Hazardous Gas Monitors; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Alreshaid, A.T.; Hester, J.G.; Su, W.; Fang, Y.; Tentzeris, M.M. Review—Ink-Jet Printed Wireless Liquid and Gas Sensors for IoT, SmartAg and Smart City Applications. J. Electrochem. Soc. 2018, 165, B407–B413. [Google Scholar] [CrossRef]
- Ramaswamy, P. IoT smart parking system for reducing green-house gas emission. In Proceedings of the 2016 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 8–9 April 2016; pp. 1–6. [Google Scholar]
- Suh, J.H.; Cho, I.; Kang, K.; Kweon, S.-J.; Lee, M.; Yoo, H.-J.; Park, I. Fully integrated and portable semiconductor-type multi-gas sensing module for IoT applications. Sens. Actuators B Chem. 2018, 265, 660–667. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Thirumurugan, T. Integrated IOT based design and Android operated Multi-purpose Field Surveillance Robot for Military Use. In Advances in Engineering Research, Proceedings of the International Conference for Phoenixes on Emerging Current Trends in Engineering and Management (PECTEAM 2018), 9–10 February 2018, Chennai, India; Atlantis Press: Paris, France, 2018; Volume 142, pp. 236–243. [Google Scholar]
- Rushikesh, R.; Sivappagari, C.M.R. Development of IoT based vehicular pollution monitoring system. In Proceedings of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Noida, India, 8–10 October 2015; pp. 779–783. [Google Scholar]
- Shu, L.; Mukherjee, M.; Wu, X. Toxic gas boundary area detection in large-scale petrochemical plants with industrial wireless sensor networks. IEEE Commun. Mag. 2016, 54, 22–28. [Google Scholar] [CrossRef]
- Alcantara, G.P. A short review of gas sensors based on interdigital electrode. IEEE ICEMI 2015, 12, 1616–1621. [Google Scholar]
Materials | Structure | Operating Temperature (°C) | Concentration (ppm) | Sensitivity/Response | Response Time (s) | Recovery Time (s) | |
---|---|---|---|---|---|---|---|
SnO2/NRGO [104] | Nanosheets | RT | 5 | 1.38 | 45 | 168 | 0.006 |
Graphene-SnO2 [105] | Nanocomposites | 150 | 1 | 24.7 | 175 | 148 | 0.14 |
SnO2/graphene [106] | Nanocomposites | 150 °C | 5 | 26,342 | 13 | Long | 405 |
RT | 171 | 7 min | 0.081 | ||||
RGO-polythiophene [107] | Thin film | RT | 10 | 26.36 | <180 | <200 | 0.015 |
Ion-Beam Irradiated SnO2 [108] | Nanowire | 150 | 2 | 14.2 | 292 | 228 | 0.025 |
MoS2 [109] | Flakes | RT (UV) | 100 | 27.92 | 29 | 350 | 0.01 |
Flakes | 100 | 100 | 21.56 | 71 | 310 | 0.003 | |
Hierarchical ZnO-RGO [110] | Nanosheets | 100 | 0.05 | 12 | 306 | 450 | 0.78 |
MoS2/Graphene [111] | Aerogel | 200 (microheater) | 0.5 | 9.1 | 21.6 | 29.4 | 0.84 |
SnO2-Polyaniline [112] | Heterostructure thin film | 25 | 50 ppb | 5% | 5 min | 15 min | 0.33 |
RGO/poly(3,4-ethylenedioxythiophene) [113] | Nanocomposite | RT | 1 | 0.05 | <180 | <70 | 0.0003 |
Pd-SnO2-RGO [68] | Nanosheets | RT | 1 | 3.92 | 13 | 105 | 0.30 |
RGO/Au [71] | Nanocomposite | 50 | 5 | 1.33 | 132 | 386 | 0.002 |
Mixed p-Type MoS2 [76] | Flakes | RT+UV | 10 | 21.78 | 6.09 | 146.49 | 0.36 |
MoS2 [77] | Nanowire networks | 60 | 5 | 18.1 | 16 | 172 | 0.23 |
Nb doped-MoSe2 [78] | 2D Layered | 150 | 3 | 8.03 | <30 | - | 0.09 |
PS/WO3–Pd60 [84] | Nanorods | RT | 2 | 5.2 | 10 | 339 | 0.26 |
Polycrystalline PdO [85] | Ultrathin films | 175 | 10 | 1.63 | <500 | 600–700 | 0.0003 |
ZnO [86] | Nanorods | 200 | 100 | 622 | 35 | 206 | 0.177 |
ZnO [86] | Bunch of nanowires | 200 | 100 | 101 | 17 | 290 | 0.06 |
Microwave-Synthesized NiO [87] | Film | 25 | 3 | 4991 | 30 | 45 | 55.4 |
On-chip grown Zn2SnO4 [89] | Nanowires | 200 | 10 | 35 | <100 | <150 | 0.035 |
BGaN/GaN superlattice [94] | Double Schottky junction | 250 | 450 | 31 | 5 | 80 | 0.013 |
Pt-AlGaN/GaN [95] | HEMT | 300 | 900 | 33 | 27 min | - | 2.2 × 10–5 |
600 | 900 | 38.5 | 1.2 min | - | 0.0006 | ||
SnO2-AlGaN/GaN [96] | Heterostructure | 250 | 500 ppb | 13% | 165 | 280 | 0.16 |
PCDTBT [98] | OFET | RT | 10 | 160 | 6.5 min | 33 min | 0.041 |
Copper Phthalocyanine (CuPc) [100] | Thin film transistor | RT | 20 | >550 | - | >3 days | negligible |
MoS2-RGO [102] | Nanosheets | 160 | 3 | 1.23 | 8 | 20 | 0.05 |
ZnO/poly(3-hexylthiophene) [103] | Nanosheet-nanorod | RT | 4 | 59 | <15 min | <45 min | 0.02 |
Materials | Structure | Operating Temperature (°C) | Concentration (ppm) | Sensitivity/Response | Response Time (s) | Recovery Time (s) | |
---|---|---|---|---|---|---|---|
Polyaniline [144] | Nanoneedles | RT | 10 | 4.2 | 180 | <180 | 0.0023 |
Polyaniline-WO3 [145] | Nanocomposite | RT | 10 | 10.6 | 180 | 180 | 0.006 |
SnO2 [146] | Thin films | RT | 1 | 138 | - | - | - |
Au/ZnO [147] | Thin films | RT | 10 | 1.1 | 20 min | 50 min | 0.0001 |
Li3PO4-Li2SO4/V2O5 [148] | Electrolyte film | 500 | 10 | 30 | 5 min | 10 min | 0.01 |
SnO2-TiO2 [149] | Composite (75 mol% of TiO2) | 450 | 10 | 55 | 5 min | >5 min | 0.02 |
g-C3N4/rGO [150] | 2D stacking hybrid | RT | 20 | 0.01 ppm−1 | 204 | 276 | 0.5 × 10−4 |
g- C3N4/rGO [150] | 2D stacking hybrid | RT + UV | 2 | 0.0032 ppm−1 | 140 | 130 | 2.3 × 10−5 |
Polyaniline [151] | Porous nanofibers | RT | 5 | 4.5% | 185 | <200 | 0.005 |
Au-PANI [112] | Heterostructured thin film | RT | 2 | 300 | - | - | - |
TiO2/rGO [116] | Nanocomposite | RT | 1 | 10.08 | 73 | 128 | 0.14 |
Ru/Al2O3/ZnO [119] | Nanosheets | 350 | 25 | 20 | 60 | 6 min | 0.013 |
SrMoO4 [120] | nanoflowers | 600 | 2000 | −17.2 | 15.6 min | <30 min | 1 × 10−5 |
NiO/SnO2 [121] | Thin film | 180 | 500 | 56 | 80 | 70 | 0.0015 |
RGO-ZnO on 2DEG AlGaN/GaN [125] | Nanorods | RT | 120 ppb | 14 | 120 | 320 | 0.98 |
NASICON-La0.5Sm0.5FeO3 [130] | Thick film electrolyte | 275 | 1 | 86.5 | 44 | 100 | 1.96 |
Zirconia-MnNb2O6 [131] | Electrolyte-electrode | 700 | 5 | 27 | 10 | >10 | 0.54 |
NH4+ZSM-5 (23) [134] | Zeolites and molecular sieves | RT | 4200 | 6.41 | 63 min | 3 min | 0.4 × 10−6 |
CoZn-NCNTs [136] | Nanotube | RT | 0.5 | 8.45% | 32 | 900 | 0.53 |
PEDOT-PSS/Y zeolite [137] | Polymer/zeolite composite | 27 | 1000 | 5 | >9.4 min | Longer | 0.8 × 10-5 |
MOF-5-NH2 [141] | Luminescent probe | RT | 0.168 | 1000 (luminescence intensity, au) | <15 | - | 396 |
Materials | Structure | Operating Temperature (°C) | Concentration (ppm) | Sensitivity/Response | Response Time (s) | Recovery Time (s) | |
---|---|---|---|---|---|---|---|
In2O3 [184] | Whiskers | RT | 10 | 35 | 240 | 7200 | 0.015 |
hc-NiO/N-rGO [185] | Composite | 92 | 100 | 54.06 | 100 | 12 | 0.0054 |
rGO/hexagonal WO3 [186] | Nanosheets composite | 330 | 10 | 45 | 7 | 55 | 0.64 |
Au/Fe2O3 [187] | Thin films | 250 | 10 | 6.38 | 1.65 min | 27 min | 0.007 |
α-Fe2O3 [188] | Micro ellipsoids | 350 | 100 | 11.7 | 78 | 15 | 0.0015 |
TiO2/ α-Fe2O3 [189] | Nanorods | 300 | 200 | 7.4 | 160 | 180 | 2.3 × 10−4 |
Pd/PdOx [190] | Core–shell nanodiscs | 200 | 3 | 54.9 | 15 | 100 | 1.22 |
ZnFe2O4 [191] | Nanosheets | 85 | 5 | 123 | 39 | 34 | 0.63 |
SnO2/ZnO [192] | Net-like hetero nanostructures | 100 | 5 | 100 | 513 | 98 | 0.04 |
SnO2-CuO [193] | Coral-like nanocomposite | 100 | 100 | 38 | 120 | long | 0.003 |
CuO-NiO [194] | Core-shell microspheres | 260 | 100 | 47 | 18 | 29 | 0.026 |
Cr-doped WO3 [195] | Microsphere | 80 | 0.1 vol. % | 89.3 | 336 | 300 | 2.65 |
SnO2 [196] | Multi-tube arrays | RT | 5 | 1.45 | 14 | 30 | 0.02 |
NiO [197] | Porous nanowall arrays | 90 | 0.001 | 1.23 | 49 | 123 | 25.1 |
Cu NPs decorated SWCNTs [198] | Nanotube | RT | 5 | 11% | 10 | 15 | 0.22 |
CuO [199] | Porous nanosheets | RT | 0.01 | 1.25 | 234 | 76 | 0.534 |
PPy-WO3 [200] | Nanocomposite films | RT | 1 | 81 | 360 | 12,600 | 0.225 |
SnO2-rGO [201] | Nanofibers | 200 | 5 | 34 | 120 | 550 | 0.06 |
SnO2-rGO [153] | Nanocomposite | 125 | 100 | 33.02 | 209 | 900 | 0.002 |
ZnO-C [154] | Composite nanofibers | 250 | 50 | 102 | - | - | - |
Pt-gated AlGaN/GaN [155] | HEMT | 250 | 90 | 112 | 219 | 507 | 0.006 |
α-Fe2O3 [164] | Nanosheets | 135 | 5 | 5.8 | 10 | 45 | 0.116 |
ZnO/CuO [165] | Nanotube | 50 | 5 | 25 | 37 | 94 | 0.135 |
In2O3 [166] | Porous nanoparticles | 25 | 1 | 26268.5 | >200 | >200 | 131.3 |
Cu2O-doped SnO2 [167] | Nanorod | RT | 5 | 30 | 21 | 204 | 0.29 |
p-type Co3O4 [169] | Mesoporous nanochains | 300 | 100 | 4.5 | 46 | 24 | 0.001 |
SnO2-CuWO4 [170] | Mesoporous layers | 100 | 20 | 2 × 106 (sensor signal) | 2.5 min | 7.3 min | - |
Chitosan-IL [178] | Film | 80 | 100 | 200% | >15 | - | 0.13 |
Cu2+-Doped SnO2/Poly pyrrole [179] | Hybrid nanospheres | RT | 0.3 | 9 | 7 | 14 | 4.28 |
Materials | Target Gas | Adsorption Energy (eV) | Shortest Adsorption Distance (Å) | Charge Transfer (e) |
---|---|---|---|---|
Pristine Arsenene [202] | NO2 | −0.4378 | 2.955 | −0.187 |
B-doped Arsenene [202] | NO2 | −1.913 | 1.562 | −0.273 |
N-doped Arsenene [202] | NO2 | −0.4502 | 2.506 | −0.163 |
Pristine Arsenene [202] | SO2 | −0.3413 | 2.957 | −0.192 |
B-doped Arsenene [202] | SO2 | −1.0733 | 1.961 | −0.141 |
N-doped Arsenene [202] | SO2 | −0.8597 | 2.278 | −0.251 |
GeSe monolayer (GeTop) [203] | SO2 | −0.58 | 2.86 | −0.2788 |
GeSe monolayer (GeTop) [203] | NO2 | −2.24 | 2.29 | −0.464 |
GeSe monolayer (SeTop) [203] | SO2 | −0.52 | 2.84 | −0.2321 |
GeSe monolayer (SeTop) [203] | NO2 | −1.97 | 3.09 | −0.2505 |
Borophene (buckled) [204] | NO2 | 1.75 | 1.56 | 0.76 |
Borophene (line-defective) [204] | NO2 | 1.80 | 1.57 | 0.89 |
Monolayer C3N [205] | NO2 | −0.79 | 2.89 | −0.388 |
Monolayer C3N [205] | H2S | −0.23 | 3.39 | −0.004 |
Monolayer C3N [205] | SO2 | −0.62 | 2.84 | −0.247 |
Blue Phosphorene [206] | H2S | −0.242 | 3.2 | 0.037 |
Blue Phosphorene [206] | SO2 | −0.247 | 3.0 | −0.138 |
C2H4Li [207] | NO2 | 4.07 | 1.90 | −0.77 |
C2H4Li [207] | SO2 | 3.09 | 1.90 | −0.38 |
Ni-MoS2 monolayer [208] | H2S | −1.319 | 2.205 | 0.254 |
Ni-MoS2 monolayer [208] | SO2 | −1.382 | 2.059 | −0.016 |
2D Tetragonal GaN [211] | NO2 | −0.673 | 2.066 | −0.108 |
Graphitic GaN sheet [212] | NO2 | −0.493 | 2.44 | −0.081 |
Graphitic GaN sheet [212] | SO2 | −1.06 | 1.79 | −0.209 |
Graphitic GaN sheet [212] | H2S | −0.446 | 2.89 | 0.139 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.H.; Rao, M.V.; Li, Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors 2019, 19, 905. https://doi.org/10.3390/s19040905
Khan MAH, Rao MV, Li Q. Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors. 2019; 19(4):905. https://doi.org/10.3390/s19040905
Chicago/Turabian StyleKhan, Md Ashfaque Hossain, Mulpuri V. Rao, and Qiliang Li. 2019. "Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S" Sensors 19, no. 4: 905. https://doi.org/10.3390/s19040905
APA StyleKhan, M. A. H., Rao, M. V., & Li, Q. (2019). Recent Advances in Electrochemical Sensors for Detecting Toxic Gases: NO2, SO2 and H2S. Sensors, 19(4), 905. https://doi.org/10.3390/s19040905