A Sensor Array Realized by a Single Flexible TiO2/POMs Film to Contactless Detection of Triacetone Triperoxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TiO2 and TiO2/PW11 Nanocrystals
2.3. Characterization
2.4. Device Fabrication and Gas Sensing Properties Testing
3. Results and Discussion
3.1. Synthesis and Characterization of TiO2/PW11 Nanocrystals
3.2. Optoelectronic Gas Sensor Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Z.; Zhou, C.; Zu, B.; Li, Y.; Dou, X. Contactless and Rapid Discrimination of Improvised Explosives Realized by Mn2+ Doping Tailored ZnS Nanocrystals. Adv. Funct. Mater. 2016, 26, 4578–4586. [Google Scholar] [CrossRef]
- Ray, R.S.; Sarma, B.; Mohanty, S.; Misra, M. Theoretical and experimental study of sensing triacetone triperoxide (TATP) explosive through nanostructured TiO2 substrate. Talanta 2014, 118, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, S.S.; Joarder, B.; Chaudhari, A.K.; Mukherjee, S.; Ghosh, S.K. Highly Selective Detection of Nitro Explosives by a Luminescent Metal–Organic Framework. Angew. Chem. Int. Ed. 2013, 52, 2881–2885. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Hua, L.; Wang, W.; Zhou, Q.; Li, H. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization. Sci. Rep. 2014, 4, 6631. [Google Scholar] [CrossRef] [PubMed]
- Mamo, S.K.; Gonzalez-Rodriguez, J. Development of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP). Sensors 2014, 14, 23269–23282. [Google Scholar] [CrossRef] [PubMed]
- Laine, D.F.; Roske, C.W.; Cheng, I.F. Electrochemical detection of triacetone triperoxide employing the electrocatalytic reaction of iron(II/III)-ethylenediaminetetraacetate and hydrogen peroxide. Anal. Chim. Acta 2008, 608, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Can, Z.; Üzer, A.; Türkekul, K.; Erçağ, E.; Apak, R. Determination of Triacetone Triperoxide with a N,N-Dimethyl-p-phenylenediamine Sensor on Nafion Using Fe3O4 Magnetic Nanoparticles. Anal. Chem. 2015, 87, 9589–9594. [Google Scholar] [CrossRef] [PubMed]
- Üzer, A.; Durmazel, S.; Erçağ, E.; Apak, R. Determination of hydrogen peroxide and triacetone triperoxide (TATP) with a silver nanoparticles-based turn-on colorimetric sensor. Sens. Actuators B Chem. 2017, 247, 98–107. [Google Scholar] [CrossRef]
- Warmer, J.; Wagner, P.; Schöning, M.J.; Kaul, P. Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors. Phys. Status Solidi 2015, 212, 1289–1298. [Google Scholar] [CrossRef]
- Yang, Z.; Dou, X.; Zhang, S.; Guo, L.; Zu, B.; Wu, Z.; Zeng, H. A High-Performance Nitro-Explosives Schottky Sensor Boosted by Interface Modulation. Adv. Funct. Mater. 2015, 25, 4039–4048. [Google Scholar] [CrossRef]
- Schnorr, J.M.; van der Zwaag, D.; Walish, J.J.; Weizmann, Y.; Swager, T.M. Sensory Arrays of Covalently Functionalized Single-Walled Carbon Nanotubes for Explosive Detection. Adv. Funct. Mater. 2013, 23, 5285–5291. [Google Scholar] [CrossRef]
- Han, C.-H.; Hong, D.-W.; Han, S.-D.; Gwak, J.; Singh, K.C. Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED. Sens. Actuators B Chem. 2007, 125, 224–228. [Google Scholar] [CrossRef]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075. [Google Scholar] [CrossRef]
- Ozawa, K.; Yamamoto, S.; Yukawa, R.; Liu, R.-Y.; Terashima, N.; Natsui, Y.; Kato, H.; Mase, K.; Matsuda, I. Correlation between Photocatalytic Activity and Carrier Lifetime: Acetic Acid on Single-Crystal Surfaces of Anatase and Rutile TiO2. J. Phys. Chem. C 2018, 122, 9562–9569. [Google Scholar] [CrossRef]
- Banerjee, S.; Mohapatra, S.K.; Das, P.P.; Misra, M. Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS. Chem. Mater. 2008, 20, 6784–6791. [Google Scholar] [CrossRef]
- Mohapatra, S.K.; Misra, M.; Mahajan, V.K.; Raja, K.S. Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2−xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. J. Phys. Chem. C 2007, 111, 8677–8685. [Google Scholar] [CrossRef]
- Banerjee, S.; Mohapatra, S.K.; Misra, M.; Mishra, I.B. The detection of improvised nonmilitary peroxide based explosives using a titania nanotube array sensor. Nanotechnology 2009, 20, 75502. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Song, H.; Liu, Q.; Bai, X.; Wang, Y.; Dong, B. Modified optical properties in a samarium doped titania inverse opal. Opt. Lett. 2010, 35, 1449–1451. [Google Scholar] [CrossRef]
- Yan, X.; Xu, Y.; Tian, B.; Lei, J.; Zhang, J.; Wang, L. Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Appl. Catal. B Environ. 2018, 224, 305–309. [Google Scholar] [CrossRef]
- Sharma, M.; Saikia, G.; Ahmed, K.; Gogoi, S.R.; Puranik, V.G.; Islam, N.S. Vanadium-based polyoxometalate complex as a new and efficient catalyst for phenol hydroxylation under mild conditions. New J. Chem. 2018, 42, 5142–5152. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Yuan, H.; Yu, W.-D.; Gu, Y.-Y.; Yan, J. Synthesis and characterization of two benzylarsonate functionalized polyoxomolybdates with catalytic activity for oxidation of benzyl alcohol to benzaldehyde. Inorg. Chem. Commun. 2018, 91, 77–80. [Google Scholar] [CrossRef]
- Makrygenni, O.; Secret, E.; Michel, A.; Brouri, D.; Dupuis, V.; Proust, A.; Siaugue, J.-M.; Villanneau, R. Heteropolytungstate-decorated core-shell magnetic nanoparticles: A covalent strategy for polyoxometalate-based hybrid nanomaterials. J. Colloid Interface Sci. 2018, 514, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Peng, H.; Liu, J.; Wang, Y.; Hao, X.; Feng, X.; Khan, S.U.; Tan, H.; Li, Y. Polyoxometalate-Based Metal–Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes. Inorg. Chem. 2018, 57, 4109–4116. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, H.; Ye, H.; Jiang, F.; Zhu, H.; Yin, J. 3D-Structured Polyoxometalate Microcrystals with Enhanced Rate Capability and Cycle Stability for Lithium-Ion Storage. ACS Appl. Mater. Interfaces 2018, 10, 18657–18664. [Google Scholar] [CrossRef] [PubMed]
- Nohra, B.; El Moll, H.; Rodriguez Albelo, L.M.; Mialane, P.; Marrot, J.; Mellot-Draznieks, C.; O’Keeffe, M.; Ngo Biboum, R.; Lemaire, J.; Keita, B.; et al. Polyoxometalate-Based Metal Organic Frameworks (POMOFs): Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 13363–13374. [Google Scholar] [CrossRef] [PubMed]
- Capua, E.; Cao, R.; Sukenik, C.N.; Naaman, R. Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions. Sens. Actuators B Chem. 2009, 140, 122–127. [Google Scholar] [CrossRef]
- Raula, M.; Gan Or, G.; Saganovich, M.; Zeiri, O.; Wang, Y.; Chierotti, M.R.; Gobetto, R.; Weinstock, I.A. Polyoxometalate Complexes of Anatase-Titanium Dioxide Cores in Water. Angew. Chem. 2015, 127, 12593–12598. [Google Scholar] [CrossRef]
- Yusuke, M.; Yuki, M.; Yoshitaka, S.; Satoshi, M.; Kenji, N. Monomer and Dimer of Mono-titanium(IV)-Containing α-Keggin Polyoxometalates: Synthesis, Molecular Structures, and pH-Dependent Monomer–Dimer Interconversion in Solution. Eur. J. Inorg. Chem. 2013, 2013, 1754–1761. [Google Scholar]
- Vorontsov, A.V.; Tsybulya, S.V. Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase. Ind. Eng. Chem. Res. 2018, 57, 2526–2536. [Google Scholar] [CrossRef]
- Lu, N.; Zhao, Y.; Liu, H.; Guo, Y.; Yuan, X.; Xu, H.; Peng, H.; Qin, H. Design of polyoxometallate–titania composite film (H3PW12O40/TiO2) for the degradation of an aqueous dye Rhodamine B under the simulated sunlight irradiation. J. Hazard. Mater. 2012, 199–200, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, T.; Song, Y.-F. Adsorption of Human Serum Albumin (HSA) by SWNTs/Py-PW11 Nanocomposite. Ind. Eng. Chem. Res. 2014, 53, 11566–11570. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, L.C.; Gong, Y.; Niu, P.; Wang, J.Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H.M. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies. Adv. Mater. 2018, 30, 1704479. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.; Sung, J.H.; Lee, Y.; Jo, M.-H.; Kim, J.K. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes. Appl. Phys. Lett. 2018, 112, 043106. [Google Scholar] [CrossRef]
- Flanigan, P.M.; Brady, J.J.; Judge, E.J.; Levis, R.J. Determination of Inorganic Improvised Explosive Device Signatures Using Laser Electrospray Mass Spectrometry Detection with Offline Classification. Anal. Chem. 2011, 83, 7115–7122. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, A.; Jang, S.-H.; Yip, H.-L.; Jen, A.K.-Y. Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. J. Mater. Chem. 2011, 21, 7269–7273. [Google Scholar] [CrossRef]
Illumination Wavelengths | 365 nm | 450 nm | 550 nm | ||||||
---|---|---|---|---|---|---|---|---|---|
Response Value | R 1 (%) | R T 2 (s) | D T 3 (s) | R (%) | R T (s) | D T (s) | R (%) | R T (s) | D T (s) |
TATP | 81 | 4 | 5 | 42 | 7 | 10 | 37 | 5 | 5 |
TNT | 37 | 7 | 9 | 37 | 10 | 13 | 32 | 8 | 8 |
DNT | 45 | 4 | 7 | 18 | 5 | 8 | 19 | 7 | 5 |
RDX | 69 | 5 | 4 | 14 | 10 | 9 | 17 | 7 | 7 |
PA | 32 | 8 | 6 | 4 | 9 | 12 | 30 | 6 | 8 |
Tetryl | 8 | 7 | 5 | 28 | 4 | 6 | 2 | 8 | 6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lü, X.; Hao, P.; Xie, G.; Duan, J.; Gao, L.; Liu, B. A Sensor Array Realized by a Single Flexible TiO2/POMs Film to Contactless Detection of Triacetone Triperoxide. Sensors 2019, 19, 915. https://doi.org/10.3390/s19040915
Lü X, Hao P, Xie G, Duan J, Gao L, Liu B. A Sensor Array Realized by a Single Flexible TiO2/POMs Film to Contactless Detection of Triacetone Triperoxide. Sensors. 2019; 19(4):915. https://doi.org/10.3390/s19040915
Chicago/Turabian StyleLü, Xiaorong, Puqi Hao, Guanshun Xie, Junyuan Duan, Li Gao, and Bingxin Liu. 2019. "A Sensor Array Realized by a Single Flexible TiO2/POMs Film to Contactless Detection of Triacetone Triperoxide" Sensors 19, no. 4: 915. https://doi.org/10.3390/s19040915
APA StyleLü, X., Hao, P., Xie, G., Duan, J., Gao, L., & Liu, B. (2019). A Sensor Array Realized by a Single Flexible TiO2/POMs Film to Contactless Detection of Triacetone Triperoxide. Sensors, 19(4), 915. https://doi.org/10.3390/s19040915