Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications
Abstract
:1. Introduction
2. Conventional Uplink NOMA
2.1. System Model
2.2. Channel Estimation Errors
3. Proposed Uplink NOMA
3.1. Proposed Sceheme
3.2. Comparison with Conventional Scheme
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Boccardi, F.; Health, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five Disruptive Technology Directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef]
- Osseiran, A.; Boccardi, F.; Braun, V.; Kusume, K.; Marsch, P.; Maternia, M.; Queseth, O.; Schellmann, M.; Schotten, H.; Taoka, H.; et al. Scenarios for 5G Mobile and Wireless Communications: The Vision of the METIS Project. IEEE Commun. Mag. 2014, 52, 26–35. [Google Scholar] [CrossRef]
- Kim, G.; Rim, M. Internet of Things in the 5G Mobile Communication System: The Optimal Number of Channels in Channel Hopping. Int. J. Netw. Distrib. Comput. 2018, 6, 108–117. [Google Scholar] [CrossRef]
- Zheng, K.; Ou, S.; Alonso-Zarate, J.; Dohler, M.; Liu, F.; Zhu, H. Challenges of Massive Access in Highly Dense LTE-Advanced Networks with Machine-to-Machine Communications. IEEE Wirel. Commun. 2014, 21, 12–18. [Google Scholar] [CrossRef]
- Islam, T.; Haha, A.M.; Akl, S. A Survey of Access Management Techniques in Machine Type Communications. IEEE Commun. Mag. 2014, 52, 74–81. [Google Scholar] [CrossRef]
- Hasan, M.; Hossain, E.; Niyato, D. Random Access for Machine-to-Machine Communication in LTE-Advanced Networks: Issues and Approaches. IEEE Commun. Mag. 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Rim, M.; Chae, S. Frame-Based Random Access with Interference Cancellation across Frames for Massive Machine Type Communications. Mob. Inf. Syst. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Zorzi, M.; Santos, A.F.d.; Popovski, P.; Pratas, N.; Stefanovic, C.; Dekorsy, A.; Bockelmann, C.; Busropan, B.; Norp, T.A.H.J. M2M Massive Wireless Access: Challenges, Research Issues, and Ways Forward. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013. [Google Scholar]
- Mohammadkarimi, M.; Raza, M.A.; Dobre, O.A. Signature-Based Nonorthogonal Massive Multiple Access for Future Wireless Networks: Uplink Massive Connectivity for Machine-Type Communications. IEEE Veh. Technol. Mag. 2018, 13, 40–50. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, M.; Condoluci, M.; Dohler, M.; Johnson, S.J. On the Fundamental Limits of Random Non-Orthogonal Multiple Access in Cellular Massive IoT. IEEE J. Sel. Areas Commun. 2017, 35, 2238–2252. [Google Scholar] [CrossRef] [Green Version]
- Kiani, A.; Ansari, N. Edge Computing Aware NOMA for 5G Networks. IEEE Internet Things J. 2018, 5, 1299–1306. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-Orthogonal Multiple Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, J.; Kang, G.; Liu, Y. Uplink Nonorthogonal Multiple Access in 5G Systems. IEEE Commun. Lett. 2016, 20, 458–461. [Google Scholar] [CrossRef]
- Chen, S.; Ren, B.; Gao, Q.; Kang, S.; Sun, S.; Niu, K. Pattern Division Multiple Access—A Novel Non-orthogonal Multiple Access for 5G Radio Network. IEEE Trans. Veh. Technol. 2017, 66, 3185–3196. [Google Scholar] [CrossRef]
- Du, Y.; Dong, B.; Chen, Z.; Fang, J.; Gao, P.; Liu, Z. Low-Complexity Detector in Sparse Code Multiple Access Systems. IEEE Commun. Lett. 2016, 20, 1812–1815. [Google Scholar] [CrossRef]
- Tao, Y.; Liu, L.; Liu, S.; Zhang, Z. A Survey: Several Technologies of Non-Orthogonal Transmission for 5G. China Commun. 2016, 12, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.; Schaepperle, J.; Wild, T. Comparing IDMA and NOMA with Superimposed Pilots Based Channel Estimation in Uplink. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015. [Google Scholar]
- Sergienko, A.B.; Klimentyev, V.P. SCMA Detection with Channel Estimation Error and Resource Block Diversity. In Proceedings of the 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, 12–14 May 2016. [Google Scholar]
- Du, Y.; Dong, B.; Zhu, W.; Gao, P.; Chen, Z.; Wang, X.; Fang, J. Joint Channel Estimation and Multiuser Detection for Uplink Grant-Free NOMA. IEEE Wirel. Commun. Lett. 2018, 7, 682–685. [Google Scholar] [CrossRef]
- Gao, Y.; Xia, B.; Liu, Y.; Yao, Y.; Xiao, K.; Lu, G. Analysis of the Dynamic Ordered Decoding for Uplink NOMA Systems with Imperfect CSI. IEEE Trans. Veh. Technol. 2018, 67, 6647–6651. [Google Scholar] [CrossRef]
- Haykin, S.; Moher, M. Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rim, M.; Kang, C.G. Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications. Sensors 2019, 19, 912. https://doi.org/10.3390/s19040912
Rim M, Kang CG. Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications. Sensors. 2019; 19(4):912. https://doi.org/10.3390/s19040912
Chicago/Turabian StyleRim, Minjoong, and Chung G. Kang. 2019. "Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications" Sensors 19, no. 4: 912. https://doi.org/10.3390/s19040912
APA StyleRim, M., & Kang, C. G. (2019). Uplink Non-Orthogonal Multiple Access with Channel Estimation Errors for Internet of Things Applications. Sensors, 19(4), 912. https://doi.org/10.3390/s19040912