Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of the Sensor
2.2. Hydrogen Sensing Tests
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Ozturk, S.; Kilinc, N. Pd thin films on flexible substrate for hydrogen sensor. J. Alloy. Compd. 2016, 674, 179–184. [Google Scholar] [CrossRef]
- Paglieri, S.N.; Way, J.D. Innovations in palladium membrane research. Sep. Purif. Methods 2002, 31, 1–169. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Takashima, I. Hysteresis behaviour of electrical resistance of the Pd-H system measured by a gas-phase method. J. Phys. Condensed. Matter. 1996, 8, 10511–10520. [Google Scholar] [CrossRef]
- Wang, B.; Zhu, Y.; Chen, Y.; Song, H.; Huang, P.; Dao, D.V. Hydrogen sensor based on palladium-yttrium alloy nanosheet. Mater. Chem. Phys. 2017, 194, 231–235. [Google Scholar] [CrossRef]
- Monshi, A.; Foroughi, M.R.; Monshi, M.R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 2, 154–160. [Google Scholar] [CrossRef]
- Zhao, Z.; Carpenter, M.A. Annealing enhanced hydrogen absorption in nanocrystalline Pd/Au sensing films. J. Appl. Phys. 2005, 97, 124301. [Google Scholar] [CrossRef]
- Yoshimura, K.; Nakano, S.; Uchinashi, S.; Yamaura, S.; Kimura, H.; Inoue, A. A hydrogen sensor based on Mg–Pd alloy thin film. Meas. Sci. Technol. 2007, 18, 3335–3338. [Google Scholar] [CrossRef]
- Phan, D.-T.; Chung, G.-S. Reliability of hydrogen sensing based on bimetallic Ni–Pd/graphene composites. Int. J. Hydrog. Energ. 2014, 39, 20294–20304. [Google Scholar] [CrossRef]
- Rashid, T.-R.; Phan, D.-T.; Chung, G.-S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators B: Chem. 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Jiang, H.C.; Huang, M.; Yu, Y.B.; Tian, X.Y.; Zhao, X.H.; Zhang, W.L.; Zhang, J.F.; Huang, Y.F.; Yu, K. Integrated Temperature and Hydrogen Sensors with MEMS Technology. Sensors 2017, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Wadell, C.; Nugroho, F.A.A.; Lidstrom, E.; Iandolo, B.; Wagner, J.B.; Langhammer, C. Hysteresis-Free Nanoplasmonic Pd–Au Alloy Hydrogen Sensors. Nano Lett. 2015, 15, 3563–3570. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Lee, J.M.; Lee, E.; Noh, J.; Joe, J.H.; Jung, B.; Lee, W. Hydrogen gas sensing performance of Pd–Ni alloy thin films. Thin Solid Films 2010, 519, 880–884. [Google Scholar] [CrossRef]
- Chachuli, S.A.M.; Hamidon, M.N.; Mamat, M.S.; Ertugrul, M.; Abdullah, N.H. A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate. Sensors 2018, 18, 2483. [Google Scholar] [CrossRef] [PubMed]
- Hoffheins, B.S.; Maxey, L.C.; Holmes, W., Jr.; Lauf, R.J.; Salter, C.; Walker, D. Development of low cost sensors for hydrogen safety application. In Proceedings of the 10th Annual National Hydrogen Association Meeting, Vienna, Austria, 7–9 April 1999. NREL/CP-570-269. [Google Scholar]
- Jewell, L.L.; Davis, B.H. Review of Absorption and Adsorption in the Hydrogen–Palladium System. Appl. Catal. A Gen. 2006, 310, 1–15. [Google Scholar] [CrossRef]
- Wicke, E.; Brodowsky, H.; Zuchner, H. Hydrogen in Palladium and Palladium Alloys. Met. Finish. 1996, 95, 73–155. [Google Scholar]
- Noh, H.; Luo, W.F.; Flanagan, T.B. The Effect of Annealing Pretreatment of Pd-Rh Alloys on Their Hydrogen Solubilities and Thermodynamic Parameters for H2 Solution. J. Alloy. Compd. 1993, 196, 7–16. [Google Scholar] [CrossRef]
- Hao, M.M.; Wu, S.H.; Han, Z.; Ye, W.B.; Wei, X.B.; Wang, X.R.; Zhi, C.; Li, S.B. Room-temperature and fast response hydrogen sensor based on annealed nanoporous palladium film. J. Mater. Sci. 2016, 51, 2420–2426. [Google Scholar] [CrossRef]
- Nabki, F.; Allidina, K.; Ahmad, F.; Cicek, P.V.; El-Gamal, M.N. A Highly Integrated 1.8 Ghz Frequency Synthesizer Based on a Mems Resonator. IEEE J. Solid-St. Circ. 2009, 44, 2154–2168. [Google Scholar] [CrossRef]
Material | Base Pressure (Pa) | Sputtering Pressure (Pa) | Sputtering Power (W) | Temperature (°C) |
---|---|---|---|---|
PdNi | 8 × 10−4 | 0.3 | 60 | RT |
Si3N4 | 8 × 10−4 | 0.5 | 200 | RT |
Au | 8 × 10−4 | 0.3 | 60 | RT |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Tian, X.; Deng, X.; Zhao, X.; Zhang, L.; Zhang, W.; Zhang, J.; Huang, Y. Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge. Sensors 2019, 19, 1096. https://doi.org/10.3390/s19051096
Jiang H, Tian X, Deng X, Zhao X, Zhang L, Zhang W, Zhang J, Huang Y. Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge. Sensors. 2019; 19(5):1096. https://doi.org/10.3390/s19051096
Chicago/Turabian StyleJiang, Hongchuan, Xiaoyu Tian, Xinwu Deng, Xiaohui Zhao, Luying Zhang, Wanli Zhang, Jianfeng Zhang, and Yifan Huang. 2019. "Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge" Sensors 19, no. 5: 1096. https://doi.org/10.3390/s19051096
APA StyleJiang, H., Tian, X., Deng, X., Zhao, X., Zhang, L., Zhang, W., Zhang, J., & Huang, Y. (2019). Low Concentration Response Hydrogen Sensors Based on Wheatstone Bridge. Sensors, 19(5), 1096. https://doi.org/10.3390/s19051096