Biosensors for Epilepsy Management: State-of-Art and Future Aspects
Abstract
:1. Epilepsy as CNS Dysfunction & Therapeutic Challenges
2. Analytical Tools for Epilepsy Detection
3. Nano-Bio-Sensing Regime Remediation
4. State of the Art Epilepsy Bio-Sensing Techniques
5. Challenges and Future Perspective
6. Viewpoint and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dumanis, S.B.; French, J.A.; Bernard, C.; Worrell, G.A.; Fureman, B.E. Seizure forecasting from idea to reality. Outcomes of the my seizure gauge epilepsy innovation institute workshop. eNeuro 2017, 4. [Google Scholar] [CrossRef]
- Dalic, L.; Cook, M.J. Managing drug-resistant epilepsy: Challenges and solutions. Neuropsychiatr. Dis. Treat. 2016, 12, 2605. [Google Scholar] [CrossRef]
- Moshé, S.L.; Perucca, E.; Ryvlin, P.; Tomson, T. Epilepsy: New advances. Lancet 2015, 385, 884–898. [Google Scholar] [CrossRef]
- Najm, I.M. Mapping brain networks in patients with focal epilepsy. Lancet Neurol. 2018, 17, 295–297. [Google Scholar] [CrossRef]
- Organización Mundial de la Salud; Programme for Neurological Diseases, World Health Organization; Global Campaign against Epilepsy, Programme for Neurological Diseases, Neuroscience (World Health Organization); International Bureau for Epilepsy, World Health Organization; Department of Mental Health, Substance Abuse, International Bureau of Epilepsy, International League against Epilepsy. Atlas: Epilepsy Care in the World; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Fisher, R.S.; Boas, W.V.E.; Blume, W.; Elger, C.; Genton, P.; Lee, P.; Engel, J., Jr. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005, 46, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Galanopoulou, A.S.; Buckmaster, P.S.; Staley, K.J.; Moshé, S.L.; Perucca, E.; Engel, J., Jr.; Löscher, W.; Noebels, J.L.; Pitkänen, A.; Stables, J. Identification of new epilepsy treatments: Issues in preclinical methodology. Epilepsia 2012, 53, 571–582. [Google Scholar] [CrossRef]
- Beghi, E. Addressing the burden of epilepsy: Many unmet needs. Pharmacol. Res. 2016, 107, 79–84. [Google Scholar] [CrossRef]
- Oby, E.; Janigro, D. The Blood–Brain Barrier and Epilepsy. Epilepsia 2006, 47, 1761–1774. [Google Scholar] [CrossRef]
- Van Vliet, E.; da Araujo, S.; Redeker, S.; van Schaik, R.; Aronica, E.; Gorter, J. Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2006, 130, 521–534. [Google Scholar] [CrossRef]
- Gorter, J.A.; van Vliet, E.A.; Aronica, E. Status epilepticus, blood–brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 2015, 49, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Marchi, N.; Banjara, M.; Janigro, D. Blood–brain barrier, bulk flow, and interstitial clearance in epilepsy. J. Neurosci. Methods 2016, 260, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Martinc, B.; Grabnar, I.; Vovk, T. The Role of Reactive Species in Epileptogenesis and Influence of Antiepileptic Drug Therapy on Oxidative Stress. Curr. Neuropharmacol. 2012, 10, 328–343. [Google Scholar] [CrossRef]
- Quaye, I.K. Extracellular hemoglobin: The case of a friend turned foe. Front. Physiol. 2015, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.S.; Cross, J.H.; D’souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef]
- Lawson, J.A.; Scheffer, I.E. Therapeutic use of medicinal cannabis in difficult to manage epilepsy. Br. J. Clin. Pharmacol. 2018, 84, 2488–2490. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, A.; Vashist, A.; Tiwari, S.; Sharmin, E.; Ahmad, S.; Bhattacharya, J. Nanotechnology for Therapeutics. In Advances in Personalized Nanotherapeutics; Springer: Cham, Switzerland, 2017; pp. 25–40. [Google Scholar]
- Engel, J., Jr.; Pitkänen, A.; Loeb, J.A.; Dudek, F.E.; Bertram, E.H., III; Cole, A.J.; Moshé, S.L.; Wiebe, S.; Jensen, F.E.; Mody, I. Epilepsy biomarkers. Epilepsia 2013, 54, 61–69. [Google Scholar] [CrossRef]
- Ryvlin, P.; Ciumas, C.; Wisniewski, I.; Beniczky, S. Wearable devices for sudden unexpected death in epilepsy prevention. Epilepsia 2018, 59, 61–66. [Google Scholar] [CrossRef]
- Torch, W.C. Biosensors, communicators, and controllers monitoring eye movement and methods for using them. U.S. Patent 7,488,294, 10 February 2009. [Google Scholar]
- Blume, W.T.; Lüders, H.O.; Mizrahi, E.; Tassinari, C.; van Emde Boas, W.; Engel, E.J., Jr. Glossary of descriptive terminology for ictal semiology: Report of the ILAE task force on classification and terminology. Epilepsia 2001, 42, 1212–1218. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Glidden, A.M.; Holloway, M.R.; Birbeck, G.L.; Schwamm, L.H. Teleneurology and mobile technologies: The future of neurological care. Nat. Rev. Neurol. 2018, 14, 285. [Google Scholar] [CrossRef]
- Pizarro, D.; Ilyas, A.; Toth, E.; Romeo, A.; Riley, K.O.; Esteller, R.; Vlachos, I.; Pati, S. Automated detection of mesial temporal and temporoperisylvian seizures in the anterior thalamic nucleus. Epilepsy Res. 2018, 146, 17–20. [Google Scholar] [CrossRef]
- Fisher, R.S. Bad information in epilepsy care. Epilepsy Behav. 2017, 67, 133–134. [Google Scholar] [CrossRef] [PubMed]
- King-Stephens, D.; Mirro, E.; Weber, P.B.; Laxer, K.D.; van Ness, P.C.; Salanova, V.; Spencer, D.C.; Heck, C.N.; Goldman, A.; Jobst, B. Lateralization of mesial temporal lobe epilepsy with chronic ambulatory electrocorticography. Epilepsia 2015, 56, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Revankar, G.S.; Winkler, M.K.; Major, S.; Schoknecht, K.; Heinemann, U.; Woitzik, J.; Claassen, J.; Hartings, J.A.; Dreier, J.P. Spreading depolarizations and seizures in clinical subdural electrocorticographic recordings. In Seizures in Critical Care; Springer: Cham, Switzerland, 2017; pp. 77–90. [Google Scholar]
- Goldenholz, D.M.; Tharayil, J.J.; Kuzniecky, R.; Karoly, P.; Theodore, W.H.; Cook, M.J. Simulating clinical trials with and without intracranial EEG data. Epilepsia Open 2017, 2, 156–161. [Google Scholar] [CrossRef]
- Duong, T.Q.; Kim, D.-S.; Uğurbil, K.; Kim, S.-G. Localized cerebral blood flow response at submillimeter columnar resolution. Proc. Natl. Acad. Sci. USA 2001, 98, 10904–10909. [Google Scholar] [CrossRef]
- Hoge, R.D.; Atkinson, J.; Gill, B.; Crelier, G.R.; Marrett, S.; Pike, G.B. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc. Natl. Acad. Sci. USA 1999, 96, 9403–9408. [Google Scholar] [CrossRef] [PubMed]
- Shmuel, A.; Yacoub, E.; Pfeuffer, J.; van de Moortele, P.-F.; Adriany, G.; Hu, X.; Ugurbil, K. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 2002, 36, 1195–1210. [Google Scholar] [CrossRef]
- Cohen, M.S.; Turner, R.; Cheng, H.-M.; Brady, T.J.; Rosen, B.R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Nadl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Nadl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef]
- Lu, H.; Golay, X.; Pekar, J.J.; van Zijl, P.C. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2003, 50, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Ugurbil, K. High-resolution functional magnetic resonance imaging of the animal brain. Methods 2003, 30, 28–41. [Google Scholar] [CrossRef]
- Pisauro, M.A.; Fouragnan, E.; Retzler, C.; Philiastides, M.G. Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-Fmri. Nat. Commun. 2017, 8, 15808. [Google Scholar] [CrossRef]
- Hao, Y.; Khoo, H.M.; von Ellenrieder, N.; Zazubovits, N.; Gotman, J. DeepIED: An epileptic discharge detector for EEG-fMRI based on deep learning. Neuroimage: Clin. 2018, 17, 962–975. [Google Scholar] [CrossRef] [PubMed]
- Elger, C.E.; Hoppe, C. Diagnostic challenges in epilepsy: Seizure under-reporting and seizure detection. Lancet Neurol. 2018, 17, 279–288. [Google Scholar] [CrossRef]
- Kaur, M.; Prakash, N.R.; Kalra, P. Early Seizure Detection Techniques: A Review. Indian J. Sci. Technol. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Tsytsarev, V.; Maslov, K.I.; Yao, J.; Parameswar, A.R.; Demchenko, A.V.; Wang, L.V. In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. J. Neurosci. Methods 2012, 203, 136–140. [Google Scholar] [CrossRef]
- De Freitas, M.L.; de Oliveira, C.V.; Mello, F.K.; Funck, V.R.; Fighera, M.R.; Royes, L.F.F.; Furian, A.F.; Larrick, J.W.; Oliveira, M.S. Na+, K+-ATPase Activating Antibody Displays in vitro and in vivo Beneficial Effects in the Pilocarpine Model of Epilepsy. Neuroscience 2018, 377, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.; Holland, J.P. Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J. Nucl. Med. 2018, 59, 382–389. [Google Scholar] [CrossRef]
- Vasta, R.; Cerasa, A.; Gramigna, V.; Augimeri, A.; Olivadese, G.; Pellegrino, G.; Martino, I.; Machado, A.; Cai, Z.; Caracciolo, M. The movement time analyser task investigated with functional near infrared spectroscopy: An ecologic approach for measuring hemodynamic response in the motor system. Aging Clin. Exp. Res. 2017, 29, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Tsytsarev, V.; Rao, B.; Maslov, K.I.; Li, L.; Wang, L.V. Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. J. Neurosci. Methods 2013, 216, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Shin, J.G.; Qureshi, M.M.; Chung, E.; Eom, T.J. Deep brain optical coherence tomography angiography in mice: In vivo, noninvasive imaging of hippocampal formation. Sci. Rep. 2018, 8, 11614. [Google Scholar] [CrossRef]
- Binder, D.K.; Haut, S.R. Toward new paradigms of seizure detection. Epilepsy Behav. 2013, 26, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Eberle, M.; Rodriguez, C.; Szu, J.; Wang, Y.; Hsu, M.; Binder, D.; Park, B. Visualizing Cortical Tissue Optical Changes During Seizure Activity with Optical Coherence Tomography. In Video Bioinformatics; Springer: Cham, Switzerland, 2015; pp. 119–132. [Google Scholar]
- Calabresi, P.A.; Balcer, L.J.; Frohman, E.M. Optical Coherence Tomography in Neurologic Diseases; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Park, B.H.; Pierce, M.C.; Cense, B.; Yun, S.H.; Mujat, M.; Tearney, G.J.; Bouma, B.E.; de Boer, J.F. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. Opt. Express 2005, 13, 3931–3944. [Google Scholar] [CrossRef] [PubMed]
- Akkad, I.; Kundu, S.; Miller, A.; Ramachandran, J.; Shetty, V. Acute Stroke of the Insular Cortex Leading to Heart Failure. J. Med Cases 2016, 7, 94–97. [Google Scholar] [CrossRef]
- Kandala, V.K.; Vadaparthi, J.K. Study of Incidence and Pattern of ECG Changes in Cerebrovascular Accidents. Radiology 2018, 3, 107–109. [Google Scholar]
- Simos, P.G.; Rezaie, R.; Papanicolaou, A.C. Applications of Magnetoencephalography in Epilepsy and Tumor Surgery. In Epilepsy Surgery and Intrinsic Brain Tumor Surgery; Springer: Cham, Switzerland, 2019; pp. 51–65. [Google Scholar]
- Ebersole, J.S. Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy. Epilepsia 1997, 38, S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Miyajima, M.; Yamakawa, T.; Abe, E.; Suzuki, Y.; Sawada, Y.; Kano, M.; Maehara, T.; Ohta, K.; Sasai-Sakuma, T.; et al. Epileptic Seizure Prediction Based on Multivariate Statistical Process Control of Heart Rate Variability Features. IEEE Trans. Biomed. Eng. 2016, 63, 1321–1332. [Google Scholar] [PubMed]
- Ulate-Campos, A.; Coughlin, F.; Gaínza-Lein, M.; Fernández, I.S.; Pearl, P.L.; Loddenkemper, T. Automated seizure detection systems and their effectiveness for each type of seizure. Seizure 2016, 40, 88–101. [Google Scholar] [CrossRef]
- Poh, M.-Z.; Loddenkemper, T.; Reinsberger, C.; Swenson, N.C.; Goyal, S.; Sabtala, M.C.; Madsen, J.R.; Picard, R.W. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia 2012, 53, e93–e97. [Google Scholar] [CrossRef]
- Milošević, M.; van de Vel, A.; Bonroy, B.; Ceulemans, B.; Lagae, L.; Vanrumste, B.; van Huffel, S. Automated detection of tonic–clonic seizures using 3-d accelerometry and surface electromyography in pediatric patients. IEEE J. Biomed. Health Inform. 2016, 20, 1333–1341. [Google Scholar] [CrossRef]
- Becq, G.; Kahane, P.; Minotti, L.; Bonnet, S.; Guillemaud, R. Classification of epileptic motor manifestations and detection of tonic–clonic seizures with acceleration norm entropy. IEEE Trans. Biomed. Eng. 2013, 60, 2080–2088. [Google Scholar] [CrossRef]
- Van de Vel, A.; Verhaert, K.; Ceulemans, B. Critical evaluation of four different seizure detection systems tested on one patient with focal and generalized tonic and clonic seizures. Epilepsy Behav. 2014, 37, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Shoeb, A.; Bourgeois, B.; Treves, S.T.; Schachter, S.C.; Guttag, J. Impact of patient-specificity on seizure onset detection performance, in: Engineering in Medicine and Biology Society. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 4110–4114. [Google Scholar]
- Rahimpour, A.; Noubari, H.A.; Kazemian, M. A case-study of NIRS application for infant cerebral hemodynamic monitoring: A report of data analysis for feature extraction and infant classification into healthy and unhealthy. Inf. Med. Unlocked 2018, 11, 44–50. [Google Scholar] [CrossRef]
- Heers, M.; Rampp, S.; Kaltenhäuser, M.; Pauli, E.; Rauch, C.; Dölken, M.T.; Stefan, H. Detection of epileptic spikes by magnetoencephalography and electroencephalography after sleep deprivation. Seizure 2010, 19, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Manickam, P.; Kaushik, A.; Karunakaran, C.; Bhansali, S. Recent advances in cytochrome c biosensing technologies. Biosens. Bioelectron. 2017, 87, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Vabbina, P.K.; Atluri, V.; Shah, P.; Vashist, A.; Jayant, R.D.; Yandart, A.; Nair, M. Electrochemical monitoring-on-chip (E-MoC) of HIV-infection in presence of cocaine and therapeutics. Biosens. Bioelectron. 2016, 86, 426–431. [Google Scholar] [CrossRef]
- Kaushik, A.; Tiwari, S.; Jayant, R.D.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254–272. [Google Scholar] [CrossRef]
- Gray, M.; Meehan, J.; Ward, C.; Langdon, S.P.; Kunkler, I.H.; Murray, A.; Argyle, D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 2018, 239, 21–29. [Google Scholar] [CrossRef]
- Jamieson, B.; Bigelow, M.E.G. In Vivo Biosensor. US Patent No. 9,883,826, 6 February 2018. [Google Scholar]
- Milošević, M.; van de Vel, A.; Cuppens, K.; Bonroy, B.; Ceulemans, B.; Lagae, L.; Vanrumste, B.; van Huffel, S. Feature selection methods for accelerometry-based seizure detection in children. Med Boil. Eng. Comput. 2017, 55, 151–165. [Google Scholar] [CrossRef]
- Li, Z.; Song, Y.; Xiao, G.; Gao, F.; Xu, S.; Wang, M.; Zhang, Y.; Guo, F.; Liu, J.; Xia, Y.; et al. Bio-electrochemical microelectrode arrays for glutamate and electrophysiology detection in hippocampus of temporal lobe epileptic rats. Anal. Biochem. 2018, 550, 123–131. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent advances in cortisol sensing technologies for point-of-care application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Solanki, P.R.; Kaushik, A.; Agrawal, V.V.; Malhotra, B.D. Nanostructured metal oxide-based biosensors. NPG Asia Mater. 2011, 3, 17. [Google Scholar] [CrossRef]
- Pitkänen, A.; Löscher, W.; Vezzani, A.; Becker, A.J.; Simonato, M.; Lukasiuk, K.; Gröhn, O.; Bankstahl, J.P.; Friedman, A.; Aronica, E. Advances in the development of biomarkers for epilepsy. Lancet Neurol. 2016, 15, 843–856. [Google Scholar] [CrossRef]
- Walker, L.E.; Janigro, D.; Heinemann, U.; Riikonen, R.; Bernard, C.; Patel, M. WONOEP appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia 2016, 57, 1354–1362. [Google Scholar] [CrossRef]
- Koepp, M.J. The help of biomarkers in the prevention of epilepsy. Lancet Neurol. 2016, 15, 782–784. [Google Scholar] [CrossRef]
- Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A Review of Organic and Inorganic Biomaterials for Neural Interfaces. Adv. Mater. 2014, 26, 1846–1885. [Google Scholar] [CrossRef]
- Bucher, E.S.; Wightman, R.M. Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. 2015, 8, 239–261. [Google Scholar] [CrossRef]
- Tedjo, W.; Nejad, J.E.; Feeny, R.; Yang, L.; Henry, C.S.; Tobet, S.; Chen, T. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. Biosens. Bioelectron. 2018, 114, 78–88. [Google Scholar] [CrossRef]
- Ruffini, G.; Dunne, S.; Farrés, E.; Marco-Pallarés, J.; Ray, C.; Mendoza, E.; Silva, R.; Grau, C. A dry electrophysiology electrode using CNT arrays. Sens. Actuators A Phys. 2006, 132, 34–41. [Google Scholar] [CrossRef]
- Krishnan, A.; Dujardin, E.; Ebbesen, T.; Yianilos, P.; Treacy, M. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013. [Google Scholar] [CrossRef]
- Ruffini, G.; Dunne, S.; Fuentemilla, L.; Grau, C.; Farres, E.; Marco-Pallarés, J.; Watts, P.; Silva, S. First human trials of a dry electrophysiology sensor using a carbon nanotube array interface. Sens. Actuators A Phys. 2008, 144, 275–279. [Google Scholar] [CrossRef]
- Okada, S.; Bartelle, B.B.; Li, N.; Breton-Provencher, V.; Lee, J.J.; Rodriguez, E.; Melican, J.; Sur, M.; Jasanoff, A. Calcium-dependent molecular fMRI using a magnetic nanosensor. Nat. Nanotechnol. 2018, 13, 473–477. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, H.; Yan, J.; Zhang, C.; Li, Y.; Wang, M.; Tan, W.; Liu, J.; Pan, Y. Multifunctional Porous Iron Oxide Nanoagents for MRI and Photothermal/Chemo Synergistic Therapy. Bioconjugate Chem. 2018, 29, 1283–1290. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.L.; Zhang, Y.F.; Gao, F.; Li, G.L.; He, Y.; Peng, M.L.; Fan, H.M. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci. 2018, 61, 400–414. [Google Scholar] [CrossRef]
- Fan, H.-M.; Olivo, M.; Shuter, B.; Yi, J.-B.; Bhuvaneswari, R.; Tan, H.-R.; Xing, G.-C.; Ng, C.-T.; Liu, L.; Lucky, S.S. Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J. Am. Chem. Soc. 2010, 132, 14803–14811. [Google Scholar] [CrossRef]
- Ur Rahman, O.; Mohapatra, S.C.; Ahmad, S. Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater. Chem. Phys. 2012, 132, 196–202. [Google Scholar] [CrossRef]
- Atanasijevic, T.; Shusteff, M.; Fam, P.; Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl. Acad. Sci. USA 2006, 103, 14707–14712. [Google Scholar] [CrossRef]
- Zhu, K.; Deng, Z.; Liu, G.; Hu, J.; Liu, S. Photoregulated cross-linking of superparamagnetic iron oxide nanoparticle (spion) loaded hybrid nanovectors with synergistic drug release and magnetic resonance (MR) imaging enhancement. Macromolecules 2017, 50, 1113–1125. [Google Scholar] [CrossRef]
- Dale, N.; Hatz, S.; Tian, F.; Llaudet, E. Listening to the brain: Microelectrode biosensors for neurochemicals. Trends Biotechnol. 2005, 23, 420–428. [Google Scholar] [CrossRef]
- Shariatgorji, M.; Nilsson, A.; Goodwin, R.J.; Källback, P.; Schintu, N.; Zhang, X.; Crossman, A.R.; Bezard, E.; Svenningsson, P.; Andren, P.E. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 2014, 84, 697–707. [Google Scholar] [CrossRef]
- Olesti, E.; Rodríguez-Morató, J.; Gomez-Gomez, A.; Ramaekers, J.G.; de la Torre, R.; Pozo, O.J. Quantification of endogenous neurotransmitters and related compounds by liquid chromatography coupled to tandem mass spectrometry. Talanta 2019, 192, 93–102. [Google Scholar] [CrossRef]
- Martins, N.R.B.; Erlhagen, W.; Freitas, R. Action potential monitoring using neuronanorobots: Neuroelectric nanosensors. Int. J. Nanomater. Nanostructures 2015, 1, 20–41. [Google Scholar]
- Clark, H.A.; Harjes, D.I.; Dubach, J.M. Intracellular Nanosensors and Methods for Their Introduction into Cells. US Patent 8,263,358, 11 September 2012. [Google Scholar]
- Fan, X.; Song, Y.; Ma, Y.; Zhang, S.; Xiao, G.; Yang, L.; Xu, H.; Zhang, D.; Cai, X. In Situ Real-Time Monitoring of Glutamate and Electrophysiology from Cortex to Hippocampus in Mice Based on a Microelectrode Array. Sensors 2017, 17, 61. [Google Scholar] [CrossRef]
- Baytak, A.K.; Aslanoglu, M. A novel sensitive method for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan using a voltammetric platform based on carbon black nanoballs. Arab. J. Chem. 2018. [Google Scholar] [CrossRef]
- Pang, P.; Yan, F.; Li, H.; Li, H.; Zhang, Y.; Wang, H.; Wu, Z.; Yang, W. Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal. Methods 2016, 8, 4912–4918. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, W.; Huang, L.; Hu, N.; Liu, W.; Liu, Y.; Li, S.; Yang, C.; Suo, Y.; Wang, J. Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim. Acta 2018, 185, 234. [Google Scholar] [CrossRef]
- Du, M.; Xu, X.; Yang, L.; Guo, Y.; Guan, S.; Shi, J.; Wang, J.; Fang, Y. Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosens. Bioelectron. 2018, 105, 109–115. [Google Scholar] [CrossRef]
- Moon, J.-M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540–552. [Google Scholar] [CrossRef]
- Keefer, E.W.; Botterman, B.R.; Romero, M.I.; Rossi, A.F.; Gross, G.W. Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 2008, 3, 434. [Google Scholar] [CrossRef]
- Andrews, R.J. Neuromodulation: Deep brain stimulation, sensory neuroprostheses, and the neural–electrical interface. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2009; pp. 127–139. [Google Scholar]
- Batra, B.; Pundir, C.S. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens. Bioelectron. 2013, 47, 496–501. [Google Scholar] [CrossRef]
- Wu, L.; Li, X.; Janagam, D.R.; Lowe, T.L. Overcoming the blood-brain barrier in chemotherapy treatment of pediatric brain tumors. Pharm. Res. 2014, 31, 531–540. [Google Scholar] [CrossRef]
- Meyyappan, M. Nano biosensors for neurochemical monitoring. Nano Converg. 2015, 2, 18. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Ahmadi, S.H.; Mahmoudabadi, Z.S.; Khoshroo, A. Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 2016, 91, 162–167. [Google Scholar] [CrossRef]
- Dowran, M.; Kumar, A.; Lawrie, B.J.; Pooser, R.C.; Marino, A.M. Quantum-enhanced plasmonic sensing. Optica 2018, 5, 628–633. [Google Scholar] [CrossRef]
- Katz, O.; Small, E.; Bromberg, Y.; Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nat. Photonics 2011, 5, 372. [Google Scholar] [CrossRef]
- Lau, H.-K.; Clerk, A.A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 2018, 9, 4320. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Li, C.-C.; Tang, B.; Zhang, C.-Y. Advances in the integration of quantum dots with various nanomaterials for biomedical and environmental applications. Analyst 2018, 143, 2469–2478. [Google Scholar] [CrossRef]
- Zheng, Y.B.; Kiraly, B.; Weiss, P.S.; Huang, T.J. Molecular plasmonics for biology and nanomedicine. Nanomedicine 2012, 7, 751–770. [Google Scholar] [CrossRef] [PubMed]
- Abedini, M.; Tekieh, T.; Sasanpour, P. Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis. Front. Comput. Neurosci. 2018, 12, 61. [Google Scholar] [CrossRef]
- Irwin, M.S.; Thorniley, M.S.; Dore, C.J.; Green, C.J. Near infra-red spectroscopy: A non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps. Br. J. Plast. Surg. 1995, 48, 14–22. [Google Scholar] [CrossRef]
- Steinhoff, B.J.; Herrendorf, G.; Kurth, C. Ictal near infrared spectroscopy in temporal lobe epilepsy: A pilot study. Seizure 1996, 5, 97–101. [Google Scholar] [CrossRef]
- Vlasov, K.; van Dort, C.J.; Solt, K. Optogenetics and Chemogenetics. In Methods in Enzymology; Eckenhoff, R.G., Dmochowski, I.J., Eds.; Elsevier, Academic Press: Amsterdam, The Netherlands, 2018; Chapter 11; pp. 181–196. [Google Scholar] [CrossRef]
- Bang, J.; Kim, H.Y.; Lee, H. Optogenetic and Chemogenetic Approaches for Studying Astrocytes and Gliotransmitters. Exp. Neurobiol. 2016, 25, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Lopatář, J.; Dale, N.; Frenguelli, B.G. Minor contribution of ATP P2 receptors to electrically-evoked electrographic seizure activity in hippocampal slices: Evidence from purine biosensors and P2 receptor agonists and antagonists. Neuropharmacology 2011, 61, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Saleem, W.; Broderick, P.A. Biomarkers for Brain Disorders Electrochemically Detected by BRODERICK PROBE® Microelectrodes/Biosensors. J. Biosens. Bioelectron. S 2013, 12, 2. [Google Scholar] [CrossRef]
- Broderick, P.A. Cocaine and Neuromolecular Imaging of Neurotransmitters in the Brain: BRODERICK PROBE® Laurate Nanobiosensors in Mesocorticolimbic Neurons and the Nucleus Accumbens: Sex and Genes. In Neuropathology of Drug Addictions and Substance Misuse; Elsevier, Academic Press: Amsterdam, The Netherlands, 2016; pp. 74–85. [Google Scholar] [CrossRef]
- Cash, K.J.; Li, C.; Xia, J.; Wang, L.V.; Clark, H.A. Optical drug monitoring: Photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. ACS Nano 2015, 9, 1692–1698. [Google Scholar] [CrossRef]
- Bayer, C.L.; Luke, G.P.; Emelianov, S.Y. Photoacoustic imaging for medical diagnostics. Acoust. Today 2012, 8, 15–23. [Google Scholar] [CrossRef]
- Fergus, P.; Hussain, A.; Hignett, D.; Al-Jumeily, D.; Abdel-Aziz, K.; Hamdan, H. A machine learning system for automated whole-brain seizure detection. Appl. Comput. Inform. 2016, 12, 70–89. [Google Scholar] [CrossRef]
- Senders, J.T.; Zaki, M.M.; Karhade, A.V.; Chang, B.; Gormley, W.B.; Broekman, M.L.; Smith, T.R.; Arnaout, O. An introduction and overview of machine learning in neurosurgical care. Acta Neurochir. 2018, 160, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Senders, J.T.; Staples, P.C.; Karhade, A.V.; Zaki, M.M.; Gormley, W.B.; Broekman, M.L.D.; Smith, T.R.; Arnaout, O. Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review. World Neurosurg. 2018, 109, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Sejdic, E.; Falk, T.H. Signal Processing and Machine Learning for Biomedical Big Data; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–600. [Google Scholar]
- Haddad, P.; Servati, A.; Soltanian, S.; Ko, F.; Servati, P. Breathable Dry Silver/Silver Chloride Electronic Textile Electrodes for Electrodermal Activity Monitoring. Biosensors 2018, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ghaffari, R.; Kim, D.-H. The quest for miniaturized soft bioelectronic devices. Nat. Biomed. Eng. 2017, 1, 0049. [Google Scholar] [CrossRef]
- Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y.; Ahmad, S.; Nair, M. Advances in Carbon Nanotubes–Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv. Healthc. Mater. 2018, 7, 1701213. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, A.; Tiwari, S.; Mishra, A.; Vashist, A.; Rawat, N.K.; Ahmad, S.; Bhattacharya, J. Design and Engineering of Nanogels. In Nanogels for Biomedical Applications; Royal Society of Chemistry: Cambridge, UK, 2017; pp. 9–28. [Google Scholar]
- Nasr, B.; Chatterton, R.; Yong, J.; Jamshidi, P.; D’Abaco, G.; Bjorksten, A.; Kavehei, O.; Chana, G.; Dottori, M.; Skafidas, E. Self-Organized Nanostructure Modified Microelectrode for Sensitive Electrochemical Glutamate Detection in Stem Cells-Derived Brain Organoids. Biosensors 2018, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lhatoo, S.D. Seizure detection: Do current devices work? And when can they be useful? Curr. Neurol. Neurosci. Rep. 2018, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Meritam, P.; Ryvlin, P.; Beniczky, S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic–clonic seizures: A field study. Epilepsia 2018, 59, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Beniczky, S.; Polster, T.; Kjaer, T.W.; Hjalgrim, H. Detection of generalized tonic–clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study. Epilepsia 2013, 54, e58–e61. [Google Scholar] [CrossRef] [PubMed]
- Shieh, P.B.; Acsadi, G.; Mueller-Felber, W.; Crawford, T.O.; Richardson, R.; Natarajan, N.; Castro, D.; Gheuens, S.; Bhan, I.; Gambino, G. Safety and Efficacy of Nusinersen in Infants/Children with Spinal Muscular Atrophy (SMA): Part 1 of the Phase 2 EMBRACE Study (P2. 324). Neurology 2018, 90, p2.234. [Google Scholar] [CrossRef]
- Mehta, D.; Deshmukh, T.; Sundaresan, Y.B.; Kumaresan, P. Continuous Monitoring and Detection of Epileptic Seizures Using Wearable Device. In Smart Innovations in Communication and Computational Sciences; Springer: Singapore, 2019. [Google Scholar]
- Advanced Brain Monitoring. Available online: https://www.advancedbrainmonitoring.com/.
- SeizAlam. Available online: http://seizalarm.com/.
- Embrace2. Available online: https://www.empatica.com/product-embrace (accessed on 27 March 2019).
- RNS. Available online: https://www.neuropace.com/.
- SENTINEL BRAIN. Available online: https://speacsystem.com/speac-system-seizure-monitor/speac-system-product-overview/ (accessed on 27 March 2019).
- Ictal Care. Available online: https://ictalcare.com/.
- SMART. Available online: http://oedk.rice.edu/Sys/PublicProfile/8104051 (accessed on 27 March 2019).
- Neuroon. Available online: https://neuroonopen.com/.
- ActiGraph. Available online: https://actigraphcorp.com/.
- INOpulse. Available online: http://www.bellerophon.com/.
- Garmin. Available online: https://www.garmin.com/.
- Hexoskin. Available online: https://www.hexoskin.com/.
- Affectiva. Available online: https://www.affectiva.com/.
- Basic Peak. Available online: https://www.intel.com/content/www/us/en/support/products/87752/emerging-technologies/wearable-devices/basis-products/basis-peak.html (accessed on 27 March 2019).
- Hobo. Available online: http://www.hoboheeze.nl/engels/projects.html (accessed on 27 March 2019).
- Recola. Available online: http://www.bhutanbrain.com/.
- VNS. Available online: https://us.livanova.cyberonics.com//.
- Vigil-AIDE. Available online: http://www.dctassociates.com.au/convul.htm (accessed on 27 March 2019).
- Epi-Care Free. Available online: https://www.danishcare.dk/epicare-free (accessed on 27 March 2019).
- Zephyr, HealthcareMedtronic.com. Available online: https://www.zephyranywhere.com/.
- Vicon. Available online: https://www.vicon.com/.
- Timex. Available online: https://www.timex.com/.
- Polar. Available online: http://www.polar.com.
- Suunto. Available online: www.suunto.com.
- AppleNikeApps. Available online: https://www.theguardian.com/technology/2014/oct/23/nike-apple-wearable-technology (accessed on 27 March 2019).
- Sensorium. Available online: http://www.sensorium.co.uk.
- SAMi. Available online: https://www.samialert.com/.
- Nike. Available online: https://qz.com/315924/the-patented-nike-shirt-that-could-track-your-heart-rate-and-blood-pressure-while-you-exercise/ (accessed on 27 March 2019).
Seizure Type | Symptoms and Associated Biomarkers |
---|---|
Tonic | Muscles contractions (Seconds to minutes) associated with body movement and sweating. |
Epileptic spasm | Flexion, extension of proximal muscles, and sweating. Occurs in clusters. |
Dystonic | Contraction and twisting of agonist and antagonist muscles, and abnormal posture. |
Myoclonic | Sudden low amplitude contraction(s) of muscle(s) |
Negative myoclonic | Inconsistent tonic muscular activity (<500 ms) |
Clonic | High amplitude semi rhythmic muscle movements associated with sweating |
Atonic | Sudden loss of muscle tone involving head, trunk, jaw, and limbs |
Generalized tonic-clonic seizure (GCTS) | Tonic contractions along with the clonic movement of somatic muscles along with sweating |
Focal dyscognitive seizure | Disturbed cognition, perception, emotion, and executing parameters associated with body movement and sweating |
Non motor | Ictal phenomenon creating sensory seizures/functions |
Autonomic | Variation in the CNS, cardiovascular, pupillary, gastrointestinal, and thermoregulatory functions |
Technique | Sensitivity (%) | Seizure Type | Ref. |
---|---|---|---|
Intracranial EEG | 80–98.8 | Focal seizures | [54] |
Scalp EEG | 74–96.6 | Focal seizures | |
EDA | 86 | Focal dyscognitive seizures | |
ECG | 70–99.8 | Focal seizures | |
Accelerometry | 95.71 | Hypermotor seizures | |
Video detection system | 93.3–100 | Motor/Hypermotor seizures | |
EDA and ACM | 94 | Motor seizures | [55] |
sEMG and ACM | 91 | Tonic-clonic seizures | [56] |
Magnetometer and ACM | 62 | Tonic seizures | [57] |
Magnetometer and ACM | 90 | Tonic clonic | [57] |
VARIA: Video, ACM and Radar-Induced Activity recording | 56 | Generalized | [58] |
EEG and EKG | 92 | Tonic clonic | [59] |
NIRS | 94 | Hemodynamic response during seizures | [60] |
MEG MEG/EEG | 60 71 | focal or generalized epilepsy | [61] |
Sensor/Product | Provider | Description | Class | Ref. |
---|---|---|---|---|
(i) Mobile EEG and cognitive state software (ii) B-Alert wireless EEG (iii) B-Alert integration (iv) Awake/sleep EEG Analysis Capabilities | Advanced brain monitoring, Carlsbad, CA, USA | Neuro-diagnostics device to interpret brain and physiological function EEG biomarkers Brain-computer interface | Minimally Invasive/invasive/wearable/non-wearable/used for detection as well as prediction sensor | [133] |
Apple Seiz Alarm | Apple Inc., Cupertino, CA, USA | Detects motions resembling to seizure, immediate intimation, monitoring of seizure activities, GPS tracking, and event log tracking. | Non-invasive/wearable/used for detection sensor | [134] |
(i) Embrace (ii) Embrace 2 | Developed at M.I.T., MA, USA | Detection of GTCS. Convulsive seizures. Tracks the activity, stress and overall body balance, water-resistant, uses Bluetooth, low energy, and provides USB connectivity for charging | Non-invasive/wearable/used as detections and prediction sensor | [131,135] |
RNS® System | NeuroPace Inc., Mountain View, CA, USA | Responds to heart rhythms and brain activity | Non-invasive/wearable/used as detection and prediction sensor | [136] |
Brain Sentinel’s SPEAC® | Brain Sentinel, Inc., Texas, TX, USA | Sensitivity to detect Generalized Tonic Clonic Seizures. Phase III trial the fastest GTC seizure alarm on the market | Non-invasive/wearable/used as detection sensor | [137] |
(i) Ictal Care365 (ii) EDDI | Ictalcare A/S; Brain Sentinel, Inc., Texas, TX, USA | Capture immediately tonic-clonic seizures wireless epilepsy alarm | Non-invasive/wearable/used as detection sensor | [138] |
SMART: Seizure Monitoring and Response Transducer belt | Team Seize and Assist/RICE, University (RICE, University) Cyberonics Inc. (Houston, TX, USA) funded the projet | Detects increased electrical skin conductance, changes in respiration rate | Non-invasive/minimally invasive/wearable/used as prediction sensor | [139] |
Neuroon | Inteliclinic, San Francisco, CA, USA | Measures eye movements, pulse, saturation, and brain waves. | Non-invasive/non-wearable/used for prediction sensor | [140] |
(i) CentrePoint insight watch (ii) ActiGraph GT9X Link (iii) wGT3X-BT (iv) CentrPoint Data hub (v) ActiLife | ActiGraph, Pensacola, FL, USA | medical-grade wearable activity and sleep monitoring solutions based on wearable accelerometry monitors and a robust software technology | Non-invasive/non-wearable/used as detection and prediction sensor | [141] |
INOpulse® | Bellerophon Therapeutics, Warren, NJ, USA | Clinical-stage biotherapeutics in Phase 2b clinical trial for the detection of Pulmonary Hypertension | Non-invasive/non-wearable/used as prediction sensor | [142] |
Garmin® Health | Garmin International, Inc., Olathe Kansas, KS, USA | Wearable solutions for clinical trials | Non-invasive/wearable/used as prediction sensor | [143] |
Smart Shirts | Hexoskin health sensors and AI (Montreal, Canada) | Biometric shirts measuring heart rate, breathing rate, active and sleep mode. | Non-invasive/wearable/used as detection and prediction sensor | [144] |
(i) Brainpower system (ii) Mirrorable (iii) Kinect/webcam and mood detection solutions (iv) Sdks & APIs | Affectiva/MIT’s Media Lab, MA, USA | Emotion measurement technology. Facial cues or physiological responses motor skills rehab based on Mirror Neurons research | Non-invasive/non-wearable/used as detection as well as prediction sensor | [145] |
(i) Basis Peak™ Watches (ii) Basis Peak™ fitness and sleep tracker | Basis/Intel/Basis Science, Inc., San Francisco, CA, USA | Measuring heart rate, temperature, skin response, and eye movement | Non-invasive/wearable/used for prediction sensor | [146] |
(i) Vitruvius: Versatile Interface for Trustworthy Vital User (ii) Holst Centre/IMEC Hobo Heeze BV (iii) Video Observation System (VOS) (iv) Emfit: nocturnal tonic-clonic seizure monitor | The Vitruvius Project, Inc., Oregon, WA, USA | Integrated algorithms, EEG, EKG, accelerometer, low consumption of power, cardio, and video sensors | Non-invasive/non-wearable/used for prediction sensor | [147] |
Ricola | Living Well With Epilepsy: Jessica, USA | Standard sensor but connected to Smartphone EEG system. | Minimally-invasive/non-wearable/used as prediction sensor | [148] |
(i) VNS Therapy (ii) 103 emipulse1 (iii) 104 Demipulse Duo1 (iv) 105 AspireHC1 (v) 106 AspireSR | Cyberonics, Inc., USA | VNS Therapy has the ability to not only prevent seizures before they start but also stop them if they do | Invasive/wearable/used for prediction and prohibit sensor | [149] |
Vigil Aide | DCT associates Pty Ltd., Australia | Convulsion/epilepsy alarm operated by one of the telecommunication authorities. | Non-invasive/non-wearable/used as detection sensor | [150] |
Epi-Care free | Danish care, Wexford, Ireland | Tonic-clonic epileptic seizure sensor worn around the wrist like a watch. arm’s movements to the alarm itself, which constantly analyzes the movements of the muscles | Non-invasive/wearable/used as detection and prediction sensor | [151] |
(i) Zephyr™ (ii) BioModule™ Devices (iii) Zephyr™ Sports Bra (iv) Zephyr™ GPS Units BioHarness and (v) OmniSense software | Zephyr Technology Corporation/Medtronic, CA, USA | Wearable technology measuring heart rate, breathing rate, HRV, posture, and accelerometer activity, body temperature, caloric burn, blood pressure | Non-invasive/wearable/used as detection and prediction sensor | [152] |
(i) Cara 3D lite (ii) Vicon Vue (iii) Bonita (iv) Blade motion software (v) Vicon vero | VICON, California, CA, USA | A camera system, power, precise and fast 3D facial capture solution | Non-invasive/non- wearable/used as detection sensor | [153] |
(i) Timex watches (ii) IRONMAN1 Easy TrainerTM/M5 (iii) Suunto Quest, Ambit3, H1, H2, H7, FT1, FT2, Ft60, FT80, FT40, FT7 (iv) L42B-1216#3467 (v) Apple Inc. | (i) Timex (USA) (ii) Polar (USA) (iii) Suunto (Finland) (iv) APPSCOMM (Guangzhou, China C&Q Telecom Equipment Co. Ltd.) (v) FuelBand fitness-tracking bracelet/apple watches (USA) | Heart rate reading, wrist heart rate measurements, mobile compatibility, GPS, waterproof Smartwatches with calling capability Dual-core smartwatch Apple watches | Non-invasive/wearable/used as detection and prediction sensor | [154,155,156,157] |
(i) Intercall (ii) Sensalert (iii) Pressure reducing mattress: Invacare | Sensorium, UK | Systems and bed management system. Chair monitoring system | Non-invasive/non-wearable/used as detection sensor | [158] |
(i) SAMi® (ii) Sami2 (iii) Sami 3 | SAMi/HIPASS DESIGN LLC, CO, USA | Sleep activity monitor using video and audio support remote infrared video camera is sent to an app that runs on an iOS device such as an iPhone or iPod Touch | Non-invasive/non- wearable/used as detection sensor | [159] |
Tracking sports gear | Nike & Athos and OMsignal (USA) | Smart shirt design for fitness tracking by measuring heart rate, temperature, blood pressure, and hydration level | Non-invasive/wearable/used as detection and prediction sensor | [160] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, S.; Sharma, V.; Mujawar, M.; Mishra, Y.K.; Kaushik, A.; Ghosal, A. Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors 2019, 19, 1525. https://doi.org/10.3390/s19071525
Tiwari S, Sharma V, Mujawar M, Mishra YK, Kaushik A, Ghosal A. Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors. 2019; 19(7):1525. https://doi.org/10.3390/s19071525
Chicago/Turabian StyleTiwari, Shivani, Varsha Sharma, Mubarak Mujawar, Yogendra Kumar Mishra, Ajeet Kaushik, and Anujit Ghosal. 2019. "Biosensors for Epilepsy Management: State-of-Art and Future Aspects" Sensors 19, no. 7: 1525. https://doi.org/10.3390/s19071525
APA StyleTiwari, S., Sharma, V., Mujawar, M., Mishra, Y. K., Kaushik, A., & Ghosal, A. (2019). Biosensors for Epilepsy Management: State-of-Art and Future Aspects. Sensors, 19(7), 1525. https://doi.org/10.3390/s19071525