Internet of Things (IoT) Operating Systems Management: Opportunities, Challenges, and Solution
Abstract
:1. Introduction
2. IoT OS Key Features and Characteristics
3. IoT OS Supported Motes
4. Future Research Directions
5. A Brief Review of Articles of This Special Issue
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
5G | Fifth generation |
6LoWPAN | IPv6 over Low-Power Wireless Personal Area Networks |
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
BLE | Bluetooth Low Energy |
CoAP | Constrained Application Protocol |
CR | Cognitive Radio |
CSMA | Carrier Sense Multiple Access |
D2D | Device to Device |
EDF | Earliest Deadline First |
FD-SU | Full Duplex enabled Secondary User |
FIS | Fuzzy Inference System |
HEMS | Home Energy Management System |
HTTP | Hypertext Transfer Protocol |
ICN | Information-Centric Networking |
IIoT | Industrial IoT |
ITS | Intelligent Transportation System |
IoT | Internet of Things |
I-IoT | Intelligent Internet of Things |
IoT-CRN | IoT- Cognitive Radio Network |
LoRaLPWAN | Long Range Low-Power Wide Area Network |
MAC | Medium Access Control |
ML | Machine Learning |
mmWave | MillimeterWave |
NFC | Near Field Communication |
OS | Operating Systems |
PU | Primary User |
RACIR | Restricted Access with Collision and Interference Resolution |
RDC | Radio Duty Cycling |
RFID | Radio-Frequency Identification |
ROLL | Routing over Low Power and Lossy Networks |
RTOS | Real Time Operating System |
SAP | Service Access Point |
SDN | Software Defined Network |
TCP | Transmission Control Protocol |
TSCH | Time Slotted Channel Hopping |
UDP | User Datagram Protocol |
UoS | Utilization of Spectrum |
UWSNs | Underwater Wireless Sensor Networks |
V2X | Vehicular to Everything |
VANETS | Vehicular Ad Hoc Networks |
WSN | Wireless Sensor Networks |
References
- Javed, F.; Afzal, M.K.; Sharif, M.; Kim, B. Internet of Things (IoT) Operating Systems Support, Networking Technologies, Applications, and Challenges: A Comparative Review. IEEE Commun. Surv. Tutor. 2018, 20, 2062–2100. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter Wave Communication: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Asghar, A.; Farooq, H.; Imran, A. Self-Healing in Emerging Cellular Networks: Review, Challenges, and Research Directions. IEEE Commun. Surv. Tutor. 2018, 20, 1682–1709. [Google Scholar] [CrossRef]
- Afzal, M.K.; Zikria, Y.B.; Mumtaz, S.; Rayes, A.; Al-Dulaimi, A.; Guizani, M. Unlocking 5G Spectrum Potential for Intelligent IoT: Opportunities, Challenges, and Solutions. IEEE Commun. Mag. 2018, 56, 92–93. [Google Scholar] [CrossRef]
- Li, L.; Zhao, G.; Blum, R.S. A Survey of Caching Techniques in Cellular Networks: Research Issues and Challenges in Content Placement and Delivery Strategies. IEEE Commun. Surv. Tutor. 2018, 20, 1710–1732. [Google Scholar] [CrossRef]
- Naik, G.; Liu, J.; Park, J.J. Coexistence of Wireless Technologies in the 5 GHz Bands: A Survey of Existing Solutions and a Roadmap for Future Research. IEEE Commun. Surv. Tutor. 2018, 20, 1777–1798. [Google Scholar] [CrossRef]
- Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1826–1857. [Google Scholar] [CrossRef]
- MacHardy, Z.; Khan, A.; Obana, K.; Iwashina, S. V2X Access Technologies: Regulation, Research, and Remaining Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 1858–1877. [Google Scholar] [CrossRef]
- Jameel, F.; Hamid, Z.; Jabeen, F.; Zeadally, S.; Javed, M.A. A Survey of Device-to-Device Communications: Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2133–2168. [Google Scholar] [CrossRef]
- Pattar, S.; Buyya, R.; Venugopal, K.R.; Iyengar, S.S.; Patnaik, L.M. Searching for the IoT Resources: Fundamentals, Requirements, Comprehensive Review, and Future Directions. IEEE Commun. Surv. Tutor. 2018, 20, 2101–2132. [Google Scholar] [CrossRef]
- Zikria, Y.B.; Yu, H.; Afzal, M.K.; Rehmani, M.H.; Hahm, O. Internet of Things (IoT): Operating System, Applications and Protocols Design, and Validation Techniques. Future Gener. Comput. Syst. 2018, 88, 699–706. [Google Scholar] [CrossRef]
- Musaddiq, A.; Zikria, Y.B.; Hahm, O.; Yu, H.; Bashir, A.K.; Kim, S.W. A Survey on Resource Management in IoT Operating Systems. IEEE Access 2018, 6, 8459–8482. [Google Scholar] [CrossRef]
- Contiki: The Open Source OS for the Internet of Things. Available online: http://www.contiki-os.org/ (accessed on 2 April 2019).
- RIOT: The Friendly Operating System for the Internet of Things. Available online: https://www.riot-os.org/ (accessed on 2 April 2019).
- Zephyr Project. Available online: https://www.zephyrproject.org/ (accessed on 2 April 2019).
- Postel, J. RFC 768-User Datagram Protocol. Internet Requests for Comments. 1980. Available online: https://tools.ietf.org/html/rfc768 (accessed on 2 April 2019).
- Postel, J. RFC 793-Transmission Control Protocol. Internet Requests for Comments. 1981. Available online: https://tools.ietf.org/html/rfc793 (accessed on 2 April 2019).
- Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. RFC 2616-Hypertext Transfer Protocol. Internet Requests for Comments. 1999. Available online: https://tools.ietf.org/html/rfc2616 (accessed on 2 April 2019).
- Kushalnagar, N.; Montenegro, G.; Schumacher, C. RFC 4919-IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals. Internet Requests for Comments. 2007. Available online: https://tools.ietf.org/html/rfc4919 (accessed on 2 April 2019).
- Shelby, Z.; Hartke, K.; Bormann, C. RFC 7252-The Constrained Application Protocol (CoAP). Internet Requests for Comments. 2014. Available online: https://tools.ietf.org/html/rfc7252 (accessed on 2 April 2019).
- Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.; Brewer, E.; et al. TinyOS: An Operating System for Sensor Networks. In Ambient Intelligence; Weber, W., Rabaey, J.M., Aarts, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 115–148. [Google Scholar] [Green Version]
- McCartney, W.P.; Sridhar, N. Abstractions for Safe Concurrent Programming in Networked Embedded Systems. In Proceedings of the 4th International Conference on Embedded Networked Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006; ACM: New York, NY, USA, 2006; pp. 167–180. [Google Scholar] [CrossRef]
- Dunkels, A. Full TCP/IP for 8-bit Architectures. In Proceedings of the 1st International Conference on Mobile Systems, Applications and Services, San Francisco, CA, USA, 5–8 May 2003; pp. 85–98. [Google Scholar] [CrossRef]
- Baccelli, E.; Hahm, O.; Gunes, M.; Wahlisch, M.; Schmidt, T.C. RIOT OS: Towards an OS for the Internet of Things. In Proceedings of the 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Turin, Italy, 14–19 April 2013; pp. 79–80. [Google Scholar] [CrossRef]
- Mbed OS. Available online: https://www.mbed.com/en/platform/mbed-os/ (accessed on 2 April 2019).
- Android Things. Available online: https://developer.android.com/things/ (accessed on 2 April 2019).
- Khorov, E.; Lyakhov, A.; Krotov, A.; Guschin, A. A Survey on IEEE 802.11Ah. Comput. Commun. 2015, 58, 53–69. [Google Scholar] [CrossRef]
- Shafiq, M.; Ahmad, M.; Irshad, A.; Gohar, M.; Usman, M.; Khalil Afzal, M.; Choi, J.G.; Yu, H. Multiple Access Control for Cognitive Radio-Based IEEE 802.11ah Networks. Sensors 2018, 18, 2043. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, M.; Yang, T.; Wu, J. IoT Hierarchical Topology Strategy and Intelligentize Evaluation System of Diesel Engine in Complexity Environment. Sensors 2018, 18, 2224. [Google Scholar] [CrossRef] [PubMed]
- Ain, Q.u.; Iqbal, S.; Khan, S.A.; Malik, A.W.; Ahmad, I.; Javaid, N. IoT Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings. Sensors 2018, 18, 2802. [Google Scholar] [CrossRef] [PubMed]
- Sher, A.; Khan, A.; Javaid, N.; Ahmed, S.H.; Aalsalem, M.Y.; Khan, W.Z. Void Hole Avoidance for Reliable Data Delivery in IoT Enabled Underwater Wireless Sensor Networks. Sensors 2018, 18, 3271. [Google Scholar] [CrossRef] [PubMed]
- Din, I.U.; Kim, B.S.; Hassan, S.; Guizani, M.; Atiquzzaman, M.; Rodrigues, J.J.P.C. Information-Centric Network-Based Vehicular Communications: Overview and Research Opportunities. Sensors 2018, 18, 3957. [Google Scholar] [CrossRef]
- Rodriguez-Zurrunero, R.; Utrilla, R.; Rozas, A.; Araujo, A. Process Management in IoT Operating Systems: Cross-Influence between Processing and Communication Tasks in End-Devices. Sensors 2019, 19, 805. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Zurrunero, R.; Tirado-Andrés, F.; Araujo, A. YetiOS: An Adaptive Operating System for Wireless Sensor Networks. In Proceedings of the 2018 IEEE 43rd Conference on Local Computer Networks Workshops (LCN Workshops), Chicago, IL, USA, 1–4 October 2018; pp. 16–22. [Google Scholar] [CrossRef]
- Obour Agyekum, K.O.B.; Xia, Q.; Sifah, E.B.; Gao, J.; Xia, H.; Du, X.; Guizani, M. A Secured Proxy-Based Data Sharing Module in IoT Environments Using Blockchain. Sensors 2019, 19, 1235. [Google Scholar] [CrossRef]
- Islam, H.M.A.; Lagutin, D.; Ylä-Jääski, A.; Fotiou, N.; Gurtov, A. Transparent CoAP Services to IoT Endpoints through ICN Operator Networks. Sensors 2019, 19, 1339. [Google Scholar] [CrossRef] [PubMed]
- Khalid, W.; Yu, H. Spatial–Temporal Sensing and Utilization in Full Duplex Spectrum-Heterogeneous Cognitive Radio Networks for the Internet of Things. Sensors 2019, 19, 1441. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, F.; Shah, M.A.; Maple, C.; Islam, S.U. A Novel Internet of Things-Enabled Accident Detection and Reporting System for Smart City Environment. Sensors 2019. under press. [Google Scholar]
OS | Min RAM | Min ROM | C | C++ | Multi | Architecture | Scheduler |
---|---|---|---|---|---|---|---|
Support | Support | Threading | |||||
TinyOS | <1 kB | <4 kB | ✗ | ✗ | ∼ | Monolithic | Cooperative |
Contiki | <2 kB | <30 kB | ∼ | ✗ | ∼ | Monolithic | Cooperative, |
preemptive | |||||||
RIOT | ∼1.5 kB | ∼5 kB | ✓ | ✓ | ✓ | Microkernel | Tickless, |
Preemptive, | |||||||
Priority based | |||||||
Zephyr | ∼2 kB to ∼8 kB | ∼50 kB | ✓ | ✓ | ✓ | Nanokernel, | Preemptive, |
Microkernel | Priority based | ||||||
MbedOS | ∼5 kB | ∼15 kB | ✓ | ✓ | ✓ | Monolithic | Preemptive |
brillo | ∼32 MB | ∼128 MB | ✓ | ✓ | ✓ | Monolithic | Completely Fair |
IoT OS | AVR | MSP430 | ARM | x86 | ARC | PIC32 |
---|---|---|---|---|---|---|
TinyOS | ✓ | ✓ | ✓ | ✗ | ✗ | ✓ |
Contiki | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ |
RIOT | ✓ | ✓ | ✓ | ✓ | ✗ | ✓ |
Zephyr | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ |
MbedOS | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
brillo | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zikria, Y.B.; Kim, S.W.; Hahm, O.; Afzal, M.K.; Aalsalem, M.Y. Internet of Things (IoT) Operating Systems Management: Opportunities, Challenges, and Solution. Sensors 2019, 19, 1793. https://doi.org/10.3390/s19081793
Zikria YB, Kim SW, Hahm O, Afzal MK, Aalsalem MY. Internet of Things (IoT) Operating Systems Management: Opportunities, Challenges, and Solution. Sensors. 2019; 19(8):1793. https://doi.org/10.3390/s19081793
Chicago/Turabian StyleZikria, Yousaf Bin, Sung Won Kim, Oliver Hahm, Muhammad Khalil Afzal, and Mohammed Y. Aalsalem. 2019. "Internet of Things (IoT) Operating Systems Management: Opportunities, Challenges, and Solution" Sensors 19, no. 8: 1793. https://doi.org/10.3390/s19081793
APA StyleZikria, Y. B., Kim, S. W., Hahm, O., Afzal, M. K., & Aalsalem, M. Y. (2019). Internet of Things (IoT) Operating Systems Management: Opportunities, Challenges, and Solution. Sensors, 19(8), 1793. https://doi.org/10.3390/s19081793