Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration †
Abstract
:1. Introduction
2. Piezoelectric MEMS Energy Harvester
2.1. Device Specifications and Fabrication Process
2.2. Design and FEM Simulations
2.3. Device Manufacturing
2.4. Electromechanical Characterization
3. Converter Circuit
4. Application Example
5. Proposed Monolithic System and Fabrication Process
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yau, C.-W.; Kwok, T.T.-O.; Lei, C.-U.; Kwok, Y.-K. Energy Harvesting in Internet of Things. In Internet of Things (Technology, Communications and Computing); Springer: Singapore, 2018; ISBN 9789811058615. [Google Scholar]
- Bouguera, T.; Diouris, J.F.; Chaillout, J.J.; Jaouadi, R.; Andrieux, G. Energy consumption model for sensor nodes based on LoRa and LoRaWAN. Sensors 2018, 18, 2104. [Google Scholar] [CrossRef]
- Boisseau, S. Energy harvesting, Wireless sensor networks & opportunities for industrial applications. Available online: https://www.eetimes.com/document.asp?doc_id=1279440 (accessed on 21 April 2019).
- Hu, Y.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R.L.; Wang, Z.L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
- Harb, A. Energy harvesting: State-of-the-art. Renew. Energy 2011, 36, 2641–2654. [Google Scholar] [CrossRef]
- Le, M.Q.; Capsal, J.F.; Lallart, M.; Hebrard, Y.; Van Der Ham, A.; Reffe, N.; Geynet, L.; Cottinet, P.J. Review on energy harvesting for structural health monitoring in aeronautical applications. Prog. Aerosp. Sci. 2015, 79, 147–157. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wu, W. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem. Int. Ed. Engl. 2012, 51, 11700–11721. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Murillo, G.; Hwang, S.; Kim, J.W.; Jung, J.H.; Chen, C.-Y.; Lee, M. Mechanical and electrical characterization of PVDF-ZnO hybrid structure for application to nanogenerator. Nano Energy 2017, 33. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, D.W.; Kim, D.H.; Kong, D.S.; Choi, J.; Lee, M.; Murillo, G.; Jung, J.H. Dominant Role of Young’s Modulus for Electric Power Generation in PVDF–BaTiO3 Composite-Based Piezoelectric Nanogenerator. Nanomaterials 2018, 8, 777. [Google Scholar] [CrossRef] [PubMed]
- Sodano, H.A.; Inman, D.J.; Park, G. A Review of Power Harvesting from Vibration Using Piezoelectric Materials. Shock Vib. Dig. 2004, 36, 197–205. [Google Scholar] [CrossRef]
- Priya, S.; Song, H.-C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.-G.; Kanno, I.; Wu, L.; Ha, D.S.; Ryu, J.; et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvest. Syst. 2017. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Miao, P.; Stark, B.H.; Yeatman, E.M.; Holmes, A.S.; Green, T.C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators A Phys. 2004, 115, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Chiu, Y.; Tseng, V.F.G. A capacitive vibration-to-electricity energy converter with integrated mechanical switches. J. Micromech. Microeng. 2008, 18, 104004. [Google Scholar] [CrossRef]
- Kil Yun, B.; Soo Kim, H.; Joon Ko, Y.; Murillo, G.; Hoon Jung, J. Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water. Nano Energy 2017, 36. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, H.S.; Kong, D.S.; Choi, M.; Kim, H.B.; Lee, J.-H.; Murillo, G.; Lee, M.; Kim, S.S.; Jung, J.H. Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy 2018, 45, 247–254. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.B.; Shearwood, C.; Harradine, M.A.; Mellor, P.H.; Birch, T.S.; Yates, R.B. Development of an electromagnetic micro-generator. IEE Proc.-Circuits Devices Syst. 2001, 148, 337–342. [Google Scholar] [CrossRef]
- Murillo, G.; Abadal, G.; Torres, F.; Lopez, J.L.L.; Giner, J.; Uranga, A.; Barniol, N. Harvester-on-chip: Design of a proof of concept prototype. Microelectron. Eng. 2009, 86, 1183–1186. [Google Scholar] [CrossRef]
- Murillo, G.; Agusti, J.; Abadal, G.; Agustí, J.; Abadal, G. Self-suspended vibration-driven energy harvesting chip for power density maximization. Smart Mater. Struct. 2015, 24, 115027. [Google Scholar] [CrossRef]
- Renaud, M.; Altena, G.; Elfrink, R.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R. Modeling and characterization of electret based vibration energy harvesters in slot-effect configuration. Smart Mater. Struct. 2015, 24, 085023. [Google Scholar] [CrossRef]
- Fonseca, L.; Calaza, C.; Salleras, M.; Murillo, G.; Esteve, J.; Tarancon, A.; Morata, A.; Santos, J.D.; Gadea, G. SiNERGY, a project on energy harvesting and microstorage empowered by Silicon technologies. In Proceedings of the 2015 10th Spanish Conference on Electron Devices (CDE 2015), Madrid, Spain, 11–13 February 2015. [Google Scholar]
- Murillo, G.; Campanella, H.; Esteve, J.; Abadal, G. Novel optimized design of a piezoelectric energy harvester in a package for low amplitude vibrations. J. Phys. Conf. Ser. 2013, 476, 012042. [Google Scholar] [CrossRef] [Green Version]
- Roundy, S.; Wright, P.K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 2004, 13, 1131–1142. [Google Scholar] [CrossRef]
- Wu, W.; Pan, C.; Zhang, Y.; Wen, X.; Wang, Z.L. Piezotronics and piezo-phototronics—From single nanodevices to array of devices and then to integrated functional system. Nano Today 2013, 8, 619–642. [Google Scholar] [CrossRef]
- Mateu, L.; Spies, P.; Kaal, W.; Muller, M.F.; Zimmermann, B.; Wurfel, U.; Brunner, B.; Kurch, M.; Spreemann, D.; Folkmer, B.; et al. Handbook of Energy Harvesting Power Supplies and Applications, 1st ed.; Jenny Stanford Publishing: Singapore, 2013; ISBN 9789814303064. [Google Scholar]
- Zessin, H.; Spies, P.; Mateu, L. Power density improvement of the power conditioning circuit for combined piezoelectric and electrodynamic generators. J. Phys. Conf. Ser. 2016, 773. [Google Scholar] [CrossRef]
- Priya, S.; Inman, D.J. Energy Harvesting Technologies, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 9780387764634. [Google Scholar]
- Tanzawa, T. On-Chip High-Voltage Generator Design: Design Methodology for Charge Pumps, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9783319219752. [Google Scholar]
- Wei, J.; Lefeuvre, E.; Mathias, H.; Costa, F. Interface circuit with adjustable bias voltage enabling maximum power point tracking of capacitive energy harvesting devices. J. Micromech. Microeng. 2016, 26, 124008. [Google Scholar] [CrossRef]
- Lopez, J.L.; Verd, J.; Uranga, A.; Murillo, G.; Giner, J.; Marigó, E.; Torres, F.; Abadal, G.; Barniol, N. VHF band-pass filter based on a single CMOS-MEMS doubleended tuning fork resonator. Procedia Chem. 2009, 1, 1131–1134. [Google Scholar] [CrossRef] [Green Version]
- López, J.L.; Giner, J.; Murillo, G.; Torres, F.; Marigó, E.; Uranga, A.; Abadal, G.; Barniol, N. Third-mode 48 MHz free-free beam resonator used as a RF balun. Microelectron. Eng. 2010, 87. [Google Scholar] [CrossRef]
- Marigó, E.; Lopez, J.L.L.; Murillo, G.; Torres, F.; Giner, J.; Uranga, A.; Abadal, G.; Esteve, J.; Barniol, N.; Marigo, E.; et al. Zero-level packaging of MEMS in standard CMOS technology. J. Micromech. Microeng. 2010, 20. [Google Scholar] [CrossRef]
- Duque, M.; Leon-Salguero, E.; Sacristán, J.; Esteve, J.; Murillo, G. Towards the Monolithic Integration of Converter Circuitry and Piezoelectric MEMS Energy Harvesters. Proceedings 2018, 2, 1512. [Google Scholar] [CrossRef]
- Murillo, G.; Agusti, J.; López-Suárez, M.; Abadal, G.; Gabriel, A.; Abadal, G. Heterogeneous Integration of Autonomous Systems in Package for Wireless Sensor Networks. Procedia Eng. 2011, 25, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Murillo, G.; Agustí, J.; Abadal, G.; Torres, F.; Giner, J.; Marigó, E.; Uranga, A.; Barniol, N. Integration of an improved Harvester-on-Chip core dice on commercial SOI-based MEMS technology. In Proceedings of the 9th International PowerMEMS Workshop, Washington, DC, USA, 1–4 December 2009. [Google Scholar]
- Uranga, A.; Verd, J.; Lopez, J.L.; Teva, J.; Torres, F.; Giner, J.J.; Murillo, G.; Abadal, G.; Barniol, N. Electrically enhanced readout system for a high-frequency CMOS-MEMS resonator. ETRI J. 2009, 31. [Google Scholar] [CrossRef]
- Lopez, J.L.; Verd, J.; Giner, J.; Uranga, A.; Murillo, G.; Marigo, E.; Torres, F.; Abadal, G.; Barniol, N. High Q CMOS-MEMS resonators and its applications as RF tunable band-pass filters. In Proceedings of the TRANSDUCERS 2009—15th International Conference on Solid-State Sensors, Actuators and Microsystems, Denver, CO, USA, 21–25 June 2009. [Google Scholar]
- Fang, H.B.; Liu, J.Q.; Xu, Z.Y.; Dong, L.; Wang, L.; Chen, D.; Cai, B.C.; Liu, Y. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 2006, 37, 1280–1284. [Google Scholar] [CrossRef]
- Murillo, G.; Campanella, H.; Agusti, J.; Esteve, J.; Abadal, G. Integration of piezoelectric energy scavengers with FBAR resonators for the miniaturization of autonomous wireless sensors nodes. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 1253–1256. [Google Scholar]
- Murillo, G.; Abadal, G.; Torres, F.; Lopez, J.L.; Giner, J.; Campanella, H.; Uranga, A.; Esteve, J.; Barniol, N. Design of piezoelectric scavengers using FBAR technology. In Proceedings of the 8th International PowerMEMS Workshop, Sendai, Japan, 9–12 November 2008. [Google Scholar]
- Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
- Murillo, G.; Duque, M.; Leon-Salguero, E.; Navarro, M.; Martinez, C.; Esteve, J. Vibration-driven Energy Harvesting for Smart Objects. In Proceedings of the 43rd International conference on Micro and Nanoengineering, Braga, Portugal, 18–22 September 2017. [Google Scholar]
- Murillo Rodriguez, G.; Esteve Tintó, J.; Sacristan Riquelme, J. System and device for collecting piezoelectric energy. W.O. Patent WO2016207458A1, 29 December 2016. [Google Scholar]
- ENERGIOT DEVICES SL, Barcelona, Spain. Available online: www.energiot.com (accessed on 10 February 2019).
- Landau, L.D.; Lifshitz, E.M. Mechanics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1999. [Google Scholar]
- Shao, L.C.; Palaniapan, M.; Tan, W.W.; Khine, L. Nonlinearity in micromechanical free-free beam resonators: Modeling and experimental verification. J. Micromech. Microeng. 2008. [Google Scholar] [CrossRef]
- Kaajakari, V. Practical MEMS: Design of Microsystems, Accelerometers, Gyroscopes, RF MEMS, Optical MEMS, and Microfluidic Systems; Small Gear Publishing: Las Vegas, NV, USA, 2009. [Google Scholar]
- Jackson, N.; O’Keeffe, R.; Waldron, F.; O’Neill, M.; Mathewson, A. Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices. Microsyst. Technol. 2014, 20, 671–680. [Google Scholar] [CrossRef]
- Andosca, R.; McDonald, T.G.; Genova, V.; Rosenberg, S.; Keating, J.; Benedixen, C.; Wu, J. Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens. Actuators A Phys. 2012, 178, 76–87. [Google Scholar] [CrossRef]
- Phillip, E.; Allen, D.R.H. CMOS Analog Circuit Design; Oxford University: Oxford, UK, 2002. [Google Scholar]
- Uyemura, J.P. Circuit design for CMOS VLSI; Springer: New York, NY, USA, 1992; ISBN 9781461536208. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque, M.; Leon-Salguero, E.; Sacristán, J.; Esteve, J.; Murillo, G. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Sensors 2019, 19, 1895. https://doi.org/10.3390/s19081895
Duque M, Leon-Salguero E, Sacristán J, Esteve J, Murillo G. Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Sensors. 2019; 19(8):1895. https://doi.org/10.3390/s19081895
Chicago/Turabian StyleDuque, Marcos, Edgardo Leon-Salguero, Jordi Sacristán, Jaume Esteve, and Gonzalo Murillo. 2019. "Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration" Sensors 19, no. 8: 1895. https://doi.org/10.3390/s19081895
APA StyleDuque, M., Leon-Salguero, E., Sacristán, J., Esteve, J., & Murillo, G. (2019). Optimization of a Piezoelectric Energy Harvester and Design of a Charge Pump Converter for CMOS-MEMS Monolithic Integration. Sensors, 19(8), 1895. https://doi.org/10.3390/s19081895