Powering the Environmental Internet of Things
Abstract
:1. Introduction
2. Defining the Environment
3. Sources of Energy
3.1. Light
3.1.1. Photovoltaics
3.1.2. Photosynthesis
3.1.3. Energy Injection
3.2. Thermal
3.2.1. Thermoelectrics
3.2.2. Pyroelectrics
3.2.3. Energy Injection: Radioisotopes
3.3. Chemical
3.3.1. Microbial
3.3.2. Chemical Potential
3.4. Kinetics
3.4.1. Fluid Movement
3.4.2. Piezoelectrics
3.4.3. Atmospheric Variation
3.5. Electrical
3.5.1. Electrostatics
3.5.2. Triboelectrics
3.6. Electromagnetic
3.6.1. Radio Frequency
3.6.2. Induction
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inf. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Prauzek, M.; Konecny, J.; Borova, M.; Janosova, K.; Hlavica, J.; Musilek, P. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review. Sensors 2018, 18, 2446. [Google Scholar] [CrossRef] [PubMed]
- Botman, F.; de Vos, J.; Bernard, S.; Stas, F.; Legat, J.; Bol, D. Bellevue: A 50 MHz variable-width SIMD 32bit microcontroller at 0.37 V for processing-intensive wireless sensor nodes. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 1207–1210. [Google Scholar] [CrossRef]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low Power Wide Area Networks: An Overview. IEEE Commun. Surv. Tutorials 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Harris, N.; Joshua, S.C. Development and range testing of a LoRaWAN system in an urban environment. Int. J. Electron. Commun. Eng. 2018, 12, 47–55. [Google Scholar]
- Kroener, M. Energy harvesting technologies: Energy sources, generators and management for wireless autonomous applications. In Proceedings of the International Multi-Conference on Systems, Signals Devices, Chemnitz, Germany, 20–23 March 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Ha, D.; Kim, D.; Choo, J.F.; Goo, N.S. Energy harvesting and monitoring using bridge bearing with built-in piezoelectric material. In Proceedings of the 7th International Conference on Networked Computing, Gumi, Korea, 26–28 September 2011; pp. 129–132. [Google Scholar]
- Merrett, G.V. Invited: Energy harvesting and transient computing: A paradigm shift for embedded systems? In Proceedings of the 2016 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahmed, T.; Muhammad, Y.; Le Moullec, Y.; Annus, P. Operating Wireless Sensor Nodes without Energy Storage: Experimental Results with Transient Computing. Electronics 2016, 5, 89. [Google Scholar] [CrossRef]
- Ahmed, F.; Kervadec, C.; Le Moullec, Y.; Tamberg, G.; Annus, P. Autonomous Wireless Sensor Networks: Implementation of Transient Computing and Energy Prediction for Improved Node Performance and Link Quality. Comput. J. 2018. [Google Scholar] [CrossRef]
- Wanger, T. The Lithium future—Resources, recycling, and the environment. Conserv. Lett. 2011, 4, 202–206. [Google Scholar] [CrossRef]
- Tang, X.; Wang, X.; Cattley, R.; Gu, F.; Ball, A.D. Energy Harvesting Technologies for Achieving Self-Powered Wireless Sensor Networks in Machine Condition Monitoring: A Review. Sensors 2018, 18, 4113. [Google Scholar] [CrossRef]
- Akan, O.B.; Cetinkaya, O.; Koca, C.; Ozger, M. Internet of Hybrid Energy Harvesting Things. IEEE Int. Things J. 2018, 5, 736–746. [Google Scholar] [CrossRef]
- Zhou, G.; Huang, L.; Li, W.; Zhu, Z. Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey. J. Sens. 2014, 2014, 815467. [Google Scholar] [CrossRef]
- Gomes, T.; Brito, J.; Abreu, H.; Gomes, H.; Cabral, J. GreenMon: An efficient wireless sensor network monitoring solution for greenhouses. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 17–19 March 2015; pp. 2192–2197. [Google Scholar] [CrossRef]
- Viñolo, C.; Toma, D.; Mànuel, A.; del Rio, J. Sea motion electrical energy generator for low-power applications. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Norway, 10–13 June 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Weddell, A.; Merrett, G.V.; Harris, N.; Al-Hashimi, B.M. Energy Harvesting and Management for Wireless Autonomous Sensors. Meas. Control 2008, 41. [Google Scholar] [CrossRef]
- Li, K.; Shu, L.; Mukherjee, M.; Wang, D.; Hu, L. Prolonging Network Lifetime with Sleep Scheduling for Solar Harvesting Industrial WSNs. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, Australia, 12–14 December 2016; pp. 1532–1533. [Google Scholar] [CrossRef]
- Niyato, D.; Hossain, E.; Fallahi, A. Sleep and Wakeup Strategies in Solar-Powered Wireless Sensor/Mesh Networks: Performance Analysis and Optimization. IEEE Trans. Mob. Comput. 2007, 6, 221–236. [Google Scholar] [CrossRef]
- Mukherjee, M.; Shu, L.; Prasad, R.V.; Wang, D.; Hancke, G.P. Sleep Scheduling for Unbalanced Energy Harvesting in Industrial Wireless Sensor Networks. IEEE Commun. Mag. 2019, 57, 108–115. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Zhao, F. A Reinforcement Learning-Based Sleep Scheduling Algorithm for Desired Area Coverage in Solar-Powered Wireless Sensor Networks. IEEE Sens. J. 2016, 16, 2763–2774. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar Jain, K.; Sharma, A. Solar Cells: In Research and Applications—A Review. Mater. Sci. Appl. 2015, 06, 1145–1155. [Google Scholar] [CrossRef]
- Yan, J.; Saunders, B.R. Third-generation solar cells: A review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv. 2014, 4, 43286–43314. [Google Scholar] [CrossRef]
- Conibeer, G. Third-generation photovoltaics. Mater. Today 2007, 10, 42–50. [Google Scholar] [CrossRef]
- Xi, H.; Chen, D.; Lv, L.; Zhong, P.; Lin, Z.; Chang, J.; Wang, H.; Wang, B.; Ma, X.; Zhang, C. High performance transient organic solar cells on biodegradable polyvinyl alcohol composite substrates. RSC Adv. 2017, 7, 52930–52937. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yao, H.; Hu, B.; Zhang, G.; Arunagiri, L.; Ma, L.K.; Huang, J.; Zhang, J.; Zhu, Z.; Bai, F.; et al. A Nonfullerene Semitransparent Tandem Organic Solar Cell with 10.5% Power Conversion Efficiency. Adv. Energy Mater. 2018, 8, 1800529. [Google Scholar] [CrossRef]
- Wang, W.S.; O’Donnell, T.; Ribetto, L.; O’Flynn, B.; Hayes, M.; O’Mathuna, C. Energy harvesting embedded wireless sensor system for building environment applications. In Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace Electronic Systems Technology, Aalborg, Denmark, 17–20 May 2009; pp. 36–41. [Google Scholar] [CrossRef]
- Berger, A.; Hörmann, L.B.; Leitner, C.; Oswald, S.B.; Priller, P.; Springer, A. Sustainable energy harvesting for robust wireless sensor networks in industrial applications. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Weddell, A.S.; Merrett, G.V.; Al-Hashimi, B.M. Photovoltaic sample-and-hold circuit enabling MPPT indoors for low-power systems. IEEE Trans. Circuits Syst. Regul. Pap. 2012, 59, 1196–1204. [Google Scholar] [CrossRef]
- Sharma, H.; Haque, A.; Jaffery, Z.A. Modeling and Optimisation of a Solar Energy Harvesting System for Wireless Sensor Network Nodes. J. Sens. Actuator Netw. 2018, 7, 40. [Google Scholar] [CrossRef]
- Kim, Y.; Evans, R.G.; Iversen, W.M. Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network. IEEE Trans. Instrum. Meas. 2008, 57, 1379–1387. [Google Scholar] [CrossRef]
- Martinez, K.; Ong, R.; Hart, J. Glacsweb: A sensor network for hostile environments. In Proceedings of the 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004, Santa Clara, CA, USA, 4–7 October 2004; pp. 81–87. [Google Scholar] [CrossRef]
- Pérez, C.A.; Jiménez, M.; Soto, F.; Torres, R.; López, J.A.; Iborra, A. A system for monitoring marine environments based on Wireless Sensor Networks. In Proceedings of the OCEANS 2011 IEEE, Santander, Spain, 6–9 June 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Bader, S.; Oelmann, B. Enabling Battery-Less Wireless Sensor Operation Using Solar Energy Harvesting at Locations with Limited Solar Radiation. In Proceedings of the Fourth International Conference on Sensor Technologies and Applications, Venice/Mestre, Italy, 18–25 July 2010; pp. 602–608. [Google Scholar] [CrossRef]
- Brunelli, D.; Moser, C.; Thiele, L.; Benini, L. Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems. IEEE Trans. Circuits Syst. Regul. Pap. 2009, 56, 2519–2528. [Google Scholar] [CrossRef] [Green Version]
- UoS Lora Nodes. LoRaWAN Node development at University of Southampton. Available online: https://github.com/loranodes/ (accessed on 1 February 2019).
- Habibzadeh, M.; Hassanalieragh, M.; Ishikawa, A.; Soyata, T.; Sharma, G. Hybrid Solar-Wind Energy Harvesting for Embedded Applications: Supercapacitor-Based System Architectures and Design Tradeoffs. IEEE Circuits Syst. Mag. 2017, 17, 29–63. [Google Scholar] [CrossRef]
- Nasiri, A.; Zabalawi, S.A.; Mandic, G. Indoor Power Harvesting Using Photovoltaic Cells for Low-Power Applications. IEEE Trans. Ind. Electron. 2009, 56, 4502–4509. [Google Scholar] [CrossRef]
- Tan, Y.K.; Panda, S.K. Energy Harvesting From Hybrid Indoor Ambient Light and Thermal Energy Sources for Enhanced Performance of Wireless Sensor Nodes. IEEE Trans. Ind. Electron. 2011, 58, 4424–4435. [Google Scholar] [CrossRef]
- Alshehri, A.; Parrott, B.; Outa, A.; Amer, A.; Abdellatif, F.; Trigui, H.; Carrasco, P.; Patel, S.; Taie, I. Dust mitigation in the desert: Cleaning mechanisms for solar panels in arid regions. In Proceedings of the 2014 Saudi Arabia Smart Grid Conference (SASG), Jeddah, Saudi Arabia, 14–17 December 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Mazumder, M.; Horenstein, M.N.; Stark, J.W.; Girouard, P.; Sumner, R.; Henderson, B.; Sadder, O.; Hidetaka, I.; Biris, A.S.; Sharma, R. Characterization of Electrodynamic Screen Performance for Dust Removal from Solar Panels and Solar Hydrogen Generators. IEEE Trans. Ind. Appl. 2013, 49, 1793–1800. [Google Scholar] [CrossRef]
- Strik, D.P.; Timmers, R.A.; Helder, M.; Steinbusch, K.J.; Hamelers, H.V.; Buisman, C.J. Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 2011, 29, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, M.; He, Z.; Angenent, L.T. Light energy to bioelectricity: Photosynthetic microbial fuel cells. Curr. Opin. Biotechnol. 2010, 21, 259–264. [Google Scholar] [CrossRef]
- Yoon, S.; Lee, H.; Fraiwan, A.; Dai, C.; Choi, S. A Microsized Microbial Solar Cell: A demonstration of photosynthetic bacterial electrogenic capabilities. IEEE Nanatechnol. Mag. 2014, 8, 24–29. [Google Scholar] [CrossRef]
- Lam, K.B.; Chiao, M.; Lin, L. A micro photosynthetic electrochemical cell. In Proceedings of the Sixteenth Annual International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, 23 January 2003; pp. 391–394. [Google Scholar] [CrossRef]
- Chiao, M.; Lam, K.B.; Lin, L. Micromachined microbial and photosynthetic fuel cells. J. Micromech. Microeng. 2006, 16, 2547–2553. [Google Scholar] [CrossRef]
- Ramanan, A.V.; Pakirisamy, M.; Williamson, S.S. Advanced Fabrication, Modeling, and Testing of a Microphotosynthetic Electrochemical Cell for Energy Harvesting Applications. IEEE Trans. Power Electron. 2015, 30, 1275–1285. [Google Scholar] [CrossRef]
- Strik, D.P.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl. Microbiol. Biotechnol. 2008, 81, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petäjäjärvi, J.; Kaleva, J.; Mikhaylov, K.; Pulkkinen, H.; Ahola, J.; Björkgren, M. Automatic charging of an energy harvesting powered sensor node from controllable energy source. In Proceedings of the 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 600–605. [Google Scholar] [CrossRef]
- Helmers, H.; Bett, A.W. Photovoltaic laser power converters for wireless optical power supply of sensor systems. In Proceedings of the 2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Aachen, Germany, 26–29 September 2016; pp. 152–154. [Google Scholar] [CrossRef]
- Liu, C.; Chen, P.; Li, K. A 500 W low-temperature thermoelectric generator: Design and experimental study. Int. J. Hydrogen Energy 2014, 39, 15497–15505. [Google Scholar] [CrossRef]
- DiSalvo, F.J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Ilahi, T.; Abid, M.; Ilahi, T. Design and analysis of thermoelectric material based roof top energy harvesting system for Pakistan. In Proceedings of the 2015 Power Generation System and Renewable Energy Technologies (PGSRET), Islamabad, Pakistan, 10–11 July 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Dias, P.C.; Morais, F.J.O.; de Morais França, M.B.; Ferreira, E.C.; Cabot, A.; Dias, J.A.S. Autonomous Multisensor System Powered by a Solar Thermoelectric Energy Harvester With Ultralow-Power Management Circuit. IEEE Trans. Instrum. Meas. 2015, 64, 2918–2925. [Google Scholar] [CrossRef]
- Carvalhaes-Dias, P.; Cabot, A.; Siqueira Dias, J.A. Evaluation of the Thermoelectric Energy Harvesting Potential at Different Latitudes Using Solar Flat Panels Systems with Buried Heat Sink. Appl. Sci. 2018, 8, 2641. [Google Scholar] [CrossRef]
- Verma, G.; Sharma, V. A Novel Thermoelectric Energy Harvester for Wireless Sensor Network Application. IEEE Trans. Ind. Electron. 2019, 66, 3530–3538. [Google Scholar] [CrossRef]
- Prijić, A.; Vračar, L.; Vučković, D.; Milić, D.; Prijić, Z. Thermal Energy Harvesting Wireless Sensor Node in Aluminum Core PCB Technology. IEEE Sens. J. 2015, 15, 337–345. [Google Scholar] [CrossRef]
- Wang, Z.; Leonov, V.; Fiorini, P.; Hoof, C.V. Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens. Actuators A 2009, 156, 95–102. [Google Scholar] [CrossRef]
- Leonov, V.; Torfs, T.; Fiorini, P.; Hoof, C.V. Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor Nodes. IEEE Sens. J. 2007, 7, 650–657. [Google Scholar] [CrossRef]
- Jänsch, D.; Lauterbach, J.; Pohle, M.; Steinberg, P. Thermoelectrics—An Opportunity for the Automotive Industry? In Proceedings of the International Conference of Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, Berlin, Germany, 1–2 December 2016; pp. 116–143. [Google Scholar] [CrossRef]
- Orr, B.; Akbarzadeh, A.; Mochizuki, M.; Singh, R. A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes. Appl. Therm. Eng. 2016, 101, 490–495. [Google Scholar] [CrossRef]
- Legros, A.; Guillaume, L.; Diny, M.; Zaïdi, H.; Lemort, V. Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle. Energies 2014, 7, 5273–5290. [Google Scholar] [CrossRef] [Green Version]
- Rajoo, S.; Romagnoli, A.; Ricardo, M.B.; Pesyridis, A.; Copeland, C.; Bin Mamat, A. Automotive Exhaust Waste Heat Recovery Technologies; NOVA Science Publishers: Hauppauge, NY, USA, 2014; pp. 265–281. [Google Scholar]
- Program, N.T.T. Pyroelectric Sandwich Thermal Energy Harvester. Available online: https://technology.nasa.gov/patent/LAR-TOPS-221 (accessed on 1 February 2019).
- Sebald, G.; Guyomar, D.; Agbossou, A. On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 2009, 18, 125006. [Google Scholar] [CrossRef]
- Cha, G.; Jia, Y.; Ju, Y.S. High-power density pyroelectric energy harvesters incorporating switchable liquid-based thermal interfaces. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 1241–1244. [Google Scholar] [CrossRef]
- Ravindran, S.K.T.; Huesgen, T.; Kroener, M.; Woias, P. A self-sustaining pyroelectric energy harvester utilizing spatial thermal gradients. In Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China, 5–9 June 2011; pp. 657–660. [Google Scholar] [CrossRef]
- Sultana, A.; Alam, M.M.; Middya, T.R.; Mandal, D. A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat. Appl. Energy 2018, 221, 299–307. [Google Scholar] [CrossRef]
- Zheng, H.; Zi, Y.; He, X.; Guo, H.; Lai, Y.C.; Wang, J.; Zhang, S.L.; Wu, C.; Cheng, G.; Wang, Z.L. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. ACS Appl. Mater. Interfaces 2018, 10, 14708–14715. [Google Scholar] [CrossRef]
- Mart, C.; Weinreich, W.; Czernohorsky, M.; Riedel, S.; Zybell, S.; Kuhnel, K. CMOS Compatible Pyroelectric Applications Enabled by Doped HfO2Films on Deep-Trench Structures. In Proceedings of the 2018 48th European Solid-State Device Research Conference (ESSDERC), Dresden, Germany, 3–6 September 2018; pp. 130–133. [Google Scholar] [CrossRef]
- Bennett, G.L.; Skrabek, E.A. Power performance of US space radioisotope thermoelectric generators. In Proceedings of the Fifteenth International Conference on Thermoelectrics, ICT ’96, Pasadena, CA, USA, 26–29 March 1996; pp. 357–372. [Google Scholar] [CrossRef]
- Bass, J.C.; Allen, D.T. Milliwatt radioisotope power supply for space applications. In Proceedings of theEighteenth International Conference on Thermoelectrics, ICT’99 (Cat. No.99TH8407), Baltimore, MD, USA, 29 August–2 September 1999; pp. 521–524. [Google Scholar] [CrossRef]
- Lange, R.G.; Carroll, W.P. Review of recent advances of radioisotope power systems. Energy Convers. Manag. 2008, 49, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Stapfer, G.; Truscello, V.C. The long-term performance degradation of a radioisotope thermoelectric generator using silicon germanium. In Proceedings of the Eleventh Intersociety Energy Conversion Engineering Conference, State Line, NV, USA, 12–17 September 1976; pp. 1533–1538. [Google Scholar]
- Huffman, F.N.; Migliore, J.J.; Robinson, W.J.; Norman, J.C. Radioisotope powered cardiac pacemakers. Cardiovasc. Dis. 1974, 1, 52–60. [Google Scholar] [CrossRef]
- Mallela, V.S.; Ilankumaran, V.; Rao, N.S. Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol. J. 2004, 4, 201–212. [Google Scholar]
- Ashraf, M.; Masoumi, N. A Thermal Energy Harvesting Power Supply with an Internal Startup Circuit for Pacemakers. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2016, 24, 26–37. [Google Scholar] [CrossRef]
- Cockfield, R.D.; Chan, T.S. Stirling radioisotope generator for Mars surface and deep space missions. In Proceedings of the 2002 IECEC 37th Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 29–31 July 2002; pp. 134–139. [Google Scholar] [CrossRef]
- Chen, Y.; Twigg, C.M.; Sadik, O.A.; Tong, S. A self-powered adaptive wireless sensor network for wastewater treatment plants. In Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Seattle, WA, USA, 21–25 March 2011; pp. 356–359. [Google Scholar] [CrossRef]
- Richter, K.E.; George, R.; Hardy, K. Autonomous, retrievable, deep sea microbial fuel cell. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, D.; Ge, Y.; Wang, W. Study of a terrestrial microbial fuel cell and its power generation performance. In Proceedings of the 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013), Xi’an, China, 22–25 October 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Sun, G.; Qiao, G.; Zhao, L.; Chen, Z. Events as Power Source: Wireless Sustainable Corrosion Monitoring. Sensors 2013, 13, 17414–17433. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Qiao, G.; Xu, B. Corrosion Monitoring Sensor Networks with Energy Harvesting. IEEE Sens. J. 2011, 11, 1476–1477. [Google Scholar] [CrossRef]
- Qiao, G.; Hong, Y.; Sun, G.; Yang, O. Corrosion Energy: A Novel Source to Power the Wireless Sensor. IEEE Sens. J. 2013, 13, 1141–1142. [Google Scholar] [CrossRef]
- Ouellette, S.A.; Todd, M.D. Cement Seawater Battery Energy Harvester for Marine Infrastructure Monitoring. IEEE Sens. J. 2014, 14, 865–872. [Google Scholar] [CrossRef]
- Holmes, A.S.; Hong, G.; Pullen, K.R.; Buffard, K.R. Axial-flow microturbine with electromagnetic generator: design, CFD simulation, and prototype demonstration. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht MEMS 2004 Technical Digest, Maastricht, Netherlands, 25–29 January 2004; pp. 568–571. [Google Scholar] [CrossRef]
- Carli, D.; Brunelli, D.; Bertozzi, D.; Benini, L. A high-efficiency wind-flow energy harvester using micro turbine. In Proceedings of the SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 778–783. [Google Scholar] [CrossRef]
- Da Costa, E.F.; De Oliveira, N.E.; Morais, F.J.O.; Carvalhaes-Dias, P.; Duarte, L.F.C.; Cabot, A.; Siqueira Dias, J.A. A Self-Powered and Autonomous Fringing Field Capacitive Sensor Integrated into a Micro Sprinkler Spinner to Measure Soil Water Content. Sensors 2017, 17, 575. [Google Scholar] [CrossRef]
- Zhu, D.; Beeby, S.; Tudor, M.; White, N.; Harris, N. A novel miniature airflow energy harvester for wireless sensing applications in buildings. IEEE Sens. J. 2013, 13, 691–700. [Google Scholar] [CrossRef]
- Li, S.; Lipson, H. Vertical-Stalk Flapping-Leaf Generator for Wind Energy Harvesting. In Proceedings of the ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2009, Oxnard, CA, USA, 20–24 September 2009; pp. 611–619. [Google Scholar]
- Erturk, A.; Vieira, W.G.R.; De Marqui, C.; Inman, D.J. On the energy harvesting potential of piezoaeroelastic systems. Appl. Phys. Lett. 2010, 96, 184103. [Google Scholar] [CrossRef] [Green Version]
- Matova, S.; Elfrink, R.; Vullers, R.; Schaijk, R. Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator. J. Micromech. Microeng. 2011, 21. [Google Scholar] [CrossRef]
- Blystad, L.J.; Halvorsen, E.; Husa, S. Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 908–919. [Google Scholar] [CrossRef]
- Pan, C.; Zhang, J.; Xia, H.; Yu, L. A piezoelectric wind energy harvesting device with right-angle cantilever beam. In Proceedings of the 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu, China, 27–30 October 2017; pp. 255–259. [Google Scholar] [CrossRef]
- Kok, S.L.; White, N.M.; Harris, N.R. A Free-Standing, Thick-Film Piezoelectric Energy Harvester. In Proceedings of the IEEE Sensors 2008, Lecce, Italy, 26–29 October 2008. [Google Scholar]
- Harris, N.; Beeby, S.; Tudor, J.; Zhu, D. Thick-film Piezoelectric Vibration Harvesting –A HUMS Application. In Proceedings of the APCOT2010, Perth, Australia, 6–9 July 2010. [Google Scholar]
- Rocha, J.G.; Goncalves, L.M.; Rocha, P.F.; Silva, M.P.; Lanceros-Mendez, S. Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear. IEEE Trans. Ind. Electron. 2010, 57, 813–819. [Google Scholar] [CrossRef]
- Khaligh, A.; Zeng, P.; Zheng, C. Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies—State of the Art. IEEE Trans. Ind. Electron. 2010, 57, 850–860. [Google Scholar] [CrossRef]
- Elhalwagy, A.M.; Ghoneem, M.Y.M.; Elhadidi, M. Feasibility Study for Using Piezoelectric Energy Harvesting Floor in Buildings’ Interior Spaces. Energy Procedia 2017, 115, 114–126. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lee, M.G.; Jeon, Y. Wearable Biomechanical Energy Harvesting Technologies. Energies 2017, 10, 1483. [Google Scholar] [CrossRef]
- Wong, C.H.; Dahari, Z.; Abd Manaf, A.; Miskam, M.A. Harvesting Raindrop Energy with Piezoelectrics: A Review. J. Electron. Mater. 2015, 44, 13–21. [Google Scholar] [CrossRef]
- Guigon, R.; Chaillout, J.J.; Jager, T.; Despesse, G. Harvesting raindrop energy: Experimental study. Smart Mater. Struct. 2008, 17, 015039. [Google Scholar] [CrossRef]
- Chua, K.; Hor, Y.F.; Lim, H.C. Raindrop Kinetic Energy Piezoelectric Harvesters and Relevant Interface Circuits: Review, Issues and Outlooks. Sens. Transducers 2016, 200, 1–15. [Google Scholar]
- Ong, Z.Z.; Wong, V.K.; Ho, J.H. Performance enhancement of a piezoelectric rain energy harvester. Sens. Actuators A 2016, 252, 154–164. [Google Scholar] [CrossRef]
- Ali, G.; Wagner, J.; Moline, D.; Schweisinger, T. Energy harvesting from atmospheric variations—Theory and test. Renewable Energy 2015, 74, 528–535. [Google Scholar] [CrossRef]
- Zhao, C.; Yisrael, S.; Smith, J.R.; Patel, S.N. Powering Wireless Sensor Nodes with Ambient Temperature Changes. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014; pp. 383–387. [Google Scholar] [CrossRef]
- Ganesh, S.; Ali, G.; Moline, D.; Schweisinger, T.; Wagner, J. Conversion of atmospheric variations into electric power—Design and analysis of an electric power generator system. Renewable Energy 2018, 120, 478–487. [Google Scholar] [CrossRef]
- Jefimenko, O.D.; Walker, D.K. Electrostatic Current Generator Having a Disk Electret as an Active Element. IEEE Trans. Ind. Appl. 1978, IA-14, 537–540. [Google Scholar] [CrossRef]
- Boisseau, S.; Despesse, G.; Seddik, B.A. Electrostatic Conversion for Vibration Energy Harvesting. arXiv 2012, arXiv:1210.5191. [Google Scholar] [Green Version]
- Sterken, T.; Fiorini, P.; Altena, G.; Van Hoof, C.; Puers, R. Harvesting energy from vibrations by a micromachined electret generator. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. U68–U69. [Google Scholar]
- Crovetto, A.; Wang, F.; Hansen, O. Modeling and Optimization of an Electrostatic Energy Harvesting Device. J. Microelectromech. Syst. 2014, 23, 1141–1155. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, I.; Vassiliadis, S.; Siores, E. Triboelectric effect in energy harvesting. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 042021. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y.; Jing, Q.; Cao, X.; Wang, Z.L. Harvesting Energy from the Natural Vibration of Human Walking. ACS Nano 2013, 7, 11317–11324. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Nalini, M.; Kumar, J.V.N.; Kumar, R.M.; Vignesh, M. Energy harvesting and management from ambient RF radiation. In Proceedings of the 2017 International Conference on Innovations in Green Energy and Healthcare Technologies (IGEHT), Coimbatore, Tamil Nadu, India, 16–18 March 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Lim, T.B.; Lee, N.M.; Poh, B.K. Feasibility study on ambient RF energy harvesting for wireless sensor network. In Proceedings of the 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Singapore, 9–11 December 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Tran, H.; Kaddoum, G.; Truong, K.T. Resource Allocation in SWIPT Networks Under a Nonlinear Energy Harvesting Model: Power Efficiency, User Fairness, and Channel Nonreciprocity. IEEE Trans. Veh. Technol. 2018, 67, 8466–8480. [Google Scholar] [CrossRef]
- Brown, W.C. The History of the Development of the Rectenna. In NASA. Johnson Space Center Solar Power Satellite Microwave Transmission and Reception; 1980; pp. 271–280. Available online: https://ntrs.nasa.gov/search.jsp?R=19810008041 (accessed on 1 February 2019).
- Xie, L.; Shi, Y.; Hou, Y.T.; Lou, A. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 2013, 20, 140–145. [Google Scholar] [CrossRef]
- Powercast’s Wireless Charging Technology Available Globally from Digi-Key. Available online: https://www.powercastco.com/powercasts-wireless-charging-technology-available-globally-digi-key/ (accessed on 1 February 2019).
- P2110B | 915Mhz RF Powerharvester Receiver. Available online: https://www.powercastco.com/wp-content/uploads/2016/12/P2110B-Datasheet-Rev-3.pdf (accessed on 1 February 2019).
- Zungeru, A.M.; Ang, L.M.; Prabaharan, S.R.S.; Phooi Seng, K. Radio Frequency Energy Harvesting and Management for Wireless Sensor Networks. arXiv 2012, arXiv:1208.4439. [Google Scholar]
- Valenta, C.R.; Durgin, G.D. Harvesting Wireless Power: Survey of Energy-Harvester Conversion Efficiency in Far-Field, Wireless Power Transfer Systems. IEEE Microwave Mag. 2014, 15, 108–120. [Google Scholar] [CrossRef]
- Lee, T.; Kennedy, H.R.B.; Bodnar, R.A.; Redman-White, W. A CMOS MF energy harvesting and data demodulator receiver for wide area low duty cycle applications with 230 mV start-up voltage. In Proceedings of the 2016 IEEE Nordic Circuits and Systems Conference (NORCAS), Copenhagen, Denmark, 1–2 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M. Wireless Power Transfer via Strongly Coupled Magnetic Resonances. Science 2007, 317, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, J.; Lan, D.; Chao, K.K.; Liou, S.; Shahnasser, H.; Fechter, R.; Hirose, S.; Harrison, M.; Roy, S. A Low-Frequency Versatile Wireless Power Transfer Technology for Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2013, 7, 526–535. [Google Scholar] [CrossRef]
- WiTricity. Available online: http://witricity.com/ (accessed on 1 February 2019).
- Ho, S.L.; Wang, J.; Fu, W.N.; Sun, M. A Comparative Study Between Novel Witricity and Traditional Inductive Magnetic Coupling in Wireless Charging. IEEE Trans. Magn. 2011, 47, 1522–1525. [Google Scholar] [CrossRef]
- WiTricity | Automotive Solutions. Available online: http://witricity.com/products/automotive/ (accessed on 1 February 2019).
- Ishida, H.; Kyoden, T.; Furukawa, H. Super-low-frequency wireless power transfer with lightweight coils for passing through a stainless steel plate. Rev. Sci. Instrum. 2018, 89, 034706. [Google Scholar] [CrossRef] [PubMed]
- Fakih, A.; Rais, U.; Maniar, S.; Naik, R.; Siddiqui, H. Implementation of a Self-Sustainable Infrastructure with remote power management. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Mane, P.; Xie, J.; Leang, K.K.; Mossi, K. Cyclic energy harvesting from pyroelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Pietrelli, A.; Ferrara, V.; Micangeli, A.; Uribe, L. Efficient energy harvesting for Microbial Fuel Cell dedicated to Wireless Sensor Network. In Proceedings of the 2015 XVIII AISEM Annual Conference, Trento, Italy, 3–5 February 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Boisseau, S.; Despesse, G.; Ricart, T.; Defay, E.; Sylvestre, A. Cantilever-based electret energy harvester. Smart Mater. Struct. 2011, 20. [Google Scholar] [CrossRef]
- Worgan, P.; Clare, L.; Proynov, P.; H Stark, B.; Coyle, D. Inductive Power Transfer for On-body Sensors: Defining a design space for safe, wirelessly powered on-body health sensors. In Proceedings of the 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Istanbul, Turkey, 20–23 May 2015. [Google Scholar] [CrossRef]
- Deng, F.; Yue, X.; Fan, X.; Guan, S.; Xu, Y.; Chen, J. Multisource Energy Harvesting System for a Wireless Sensor Network Node in the Field Environment. IEEE Internet Things J. 2019, 6, 918–927. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Yang, Y.; Ye, F. Combining Solar Energy Harvesting with Wireless Charging for Hybrid Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2018, 17, 560–576. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, E.; Chi, K. Encoding Scheme to Reduce Energy Consumption of Delivering Data in Radio Frequency Powered Battery-Free Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2018, 67, 3085–3097. [Google Scholar] [CrossRef]
- Esteves, V.; Antonopoulos, A.; Kartsakli, E.; Puig-Vidal, M.; Miribel-Català, P.; Verikoukis, C. Cooperative energy harvesting-adaptive MAC protocol for WBANs. Sensors 2015, 15, 12635–12650. [Google Scholar] [CrossRef]
- Ibarra, E.; Antonopoulos, A.; Kartsakli, E.; Rodrigues, J.J.P.C.; Verikoukis, C. QoS-Aware Energy Management in Body Sensor Nodes Powered by Human Energy Harvesting. IEEE Sens. J. 2016, 16, 542–549. [Google Scholar] [CrossRef]
Harvester | Demonstrated Power Output | References |
---|---|---|
Photovoltaic (Outdoor) | 50 mW cm−2 | [37] |
Photovoltaic (Indoor) | 50 μW cm−2 | [37] |
Photosynthesis (Lab) | 10–40 μW cm−2 | [47] |
Thermoelectrics | 20 μW cm−2 | [59] |
Pyroelectrics (lab) | 8.64 μW cm−3 | [132] |
Microbial | 3–700 μW cm−3 | [79,133] |
Chemical Potential | 3 mW | [82] |
Air Movement | 6 μW cm−2 | [89,94] |
Pressure Variation | 15 μW cm−2 | [105] |
Piezoelectrics | 12.5 mW | [102] |
Triboelectrics | 3 mW cm−2 | [113] |
Electrostatics | 12 mW cm−2 | [134] |
Radio Frequency | 10.3 μW system | [124] |
Induction | 70+ μW cm−2 | [135] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curry, J.; Harris, N. Powering the Environmental Internet of Things. Sensors 2019, 19, 1940. https://doi.org/10.3390/s19081940
Curry J, Harris N. Powering the Environmental Internet of Things. Sensors. 2019; 19(8):1940. https://doi.org/10.3390/s19081940
Chicago/Turabian StyleCurry, Joshua, and Nick Harris. 2019. "Powering the Environmental Internet of Things" Sensors 19, no. 8: 1940. https://doi.org/10.3390/s19081940
APA StyleCurry, J., & Harris, N. (2019). Powering the Environmental Internet of Things. Sensors, 19(8), 1940. https://doi.org/10.3390/s19081940