Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas
Abstract
:1. Introduction
2. Electrically Small Omnidirectional WPT-Driven Light and Temperature Sensors
2.1. Design of the Electrically Small EAD Antenna with Inductive Impedance
2.2. Design of the Sensor-Augmented Rectifier Circuit
2.3. Experimental Results
3. Electrically Small Huygens (Unidirectional, Broadside) Light and Temperature Sensors
3.1. Design of the Electrically Small Huygens Antenna with an Inductive Input Impedance
3.2. Experimental Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Area. Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Costanzo, A.; Masotti, D. Energizing 5G: Near- and far-field wireless energy and data transfer as an enabling technology for the 5G IoT. IEEE Microw. Mag. 2017, 18, 125–136. [Google Scholar] [CrossRef]
- Bjorkqvist, O.; Dahlberg, O.; Silver, G.; Kolitsidas, C.; Quevedo-Teruel, O.; Jonsson, B.L.G. Wireless sensor network utilizing radio-frequency energy harvesting for smart building applications. IEEE Antennas Propag. Mag. 2018, 60, 124–136. [Google Scholar] [CrossRef]
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Visser, H.J.; Vullers, R.J.M. RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proc. IEEE 2013, 101, 1410–1423. [Google Scholar] [CrossRef]
- Carvalho, N.B.; Georgiadis, A.; Costanzo, A.; Rogier, H.; Collado, A.; García, J.A.; Lucyszyn, S.; Mezzanotte, P.; Kracek, J.; Masotti, D.; et al. Wireless power transmission: R&D activities within Europe. IEEE Trans. Microw. Theory Technol. 2014, 62, 1031–1045. [Google Scholar]
- Shinohara, N. Beam control technologies with a high-efficiency phased array for microwave power transmission in Japan. Proc. IEEE 2013, 101, 1448–1463. [Google Scholar] [CrossRef]
- Popovic, Z. Cut the cord: Low-power far-field wireless powering. IEEE Microw. Mag. 2013, 14, 55–62. [Google Scholar] [CrossRef]
- Palazzi, V.; Prete, M.; Fantuzzi, M. Scavenging for Energy: A Rectenna Design for Wireless Energy Harvesting in UHF Mobile Telephony Bands. IEEE Microw. Mag. 2017, 18, 91–99. [Google Scholar] [CrossRef]
- Palazzi, V.; Hester, J.; Bito, J.; Alimenti, F.; Kalialakis, C.; Collad, A.; Mezzanotte, P.; Georgiadis, A.; Roselli, L.; Tentzeris, M.M. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans. Microw. Theory Technol. 2018, 66, 366–379. [Google Scholar] [CrossRef]
- Gu, Z.; Hemour, S.; Guo, L.; Wu, K. Integrated cooperative ambient power harvester collecting ubiquitous radio frequency and kinetic energy. IEEE Trans. Microw. Theory Technol. 2018, 66, 4178–4190. [Google Scholar] [CrossRef]
- Shen, S.; Chiu, C.-Y.; Murch, R.D. Multiport pixel rectenna for ambient RF energy harvesting. IEEE Trans. Antennas Propag. 2018, 66, 644–656. [Google Scholar] [CrossRef]
- Zeng, M.; Andrenko, A.S.; Liu, X.; Li, Z.; Tan, H.-Z. A compact fractal loop rectenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2424–2427. [Google Scholar] [CrossRef]
- McSpadden, J.O.; Fan, L.; Chang, K. Design and experiments of a high conversion efficiency 5.8 GHz rectenna. IEEE Trans. Microw. Theory Technol. 1998, 46, 2053–2060. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Zhou, J.; Carter, P.; Yuan, S.; Xu, Q.; Fei, Z. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Trans. Ind. Electron. 2017, 64, 3950–3961. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.X.; Sun, H.; Xiao, S. Design and safety considerations of an implantable rectenna for far-field wireless power transfer. IEEE Trans. Antennas Propag. 2014, 62, 5798–5806. [Google Scholar] [CrossRef]
- Sun, H.; Wen, G. A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1451–1454. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Y.X.; He, M.; Zhong, Z. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 929–932. [Google Scholar]
- Massa, A.; Oliveri, G.; Viani, F.; Rocca, P. Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions. Proc. IEEE 2013, 101, 1464–1481. [Google Scholar] [CrossRef]
- Strassner, B.; Chang, K. 5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission. IEEE Trans. Microw. Theory Technol. 2002, 50, 1870–1876. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Joseph, S.D.; Li, G. Novel compact and broadband frequency-selectable rectennas for a wide input-power and load impedance range. IEEE Trans. Antennas Propag. 2018, 66, 3306–3316. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef]
- Almoneef, T.S.; Erkmen, F.; Alotaibi, M.A.; Ramahi, O.M. A new approach to microwave rectennas using tightly coupled antennas. IEEE Trans. Antennas Propag. 2018, 66, 1714–1724. [Google Scholar] [CrossRef]
- Popović, Z.; Falkenstein, E.A.; Costinett, D.; Zane, R. Low-power far-field wireless powering for wireless sensors. Proc. IEEE 2013, 101, 1397–1409. [Google Scholar] [CrossRef]
- Mattsson, M.; Kolitsidas, C.I.; Jonsson, B.L.G. Dual-band dual-polarized full-wave rectenna based on differential field sampling. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 956–959. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Li, L.; Liu, Y.; Zhang, B.; Zhu, H.; Huang, K. A 5.8 GHz circularly polarized rectenna with harmonic suppression and rectenna array for wireless power transfer. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1276–1280. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, K.; Yang, Y.; Zhang, B. A low-profile lightweight circularly polarized rectenna array based on coplanar waveguide. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1659–1663. [Google Scholar] [CrossRef]
- Zhu, N.; Ziolkowski, R.W.; Xin, H. A metamaterial-inspired, electrically small rectenna for high-efficiency low power harvesting and scavenging at the GPS L1 frequency. Appl. Phys. Lett. 2011, 99, 114101. [Google Scholar] [CrossRef]
- Ziolkowski, R.W. Low profile, broadside radiating, electrically small Huygens source antennas. IEEE Access. 2015, 3, 2644–2651. [Google Scholar] [CrossRef]
- Baum, T.C.; Ziolkowski, R.W.; Ghorbani, K.; Nicholson, K.J. Investigations of a load-bearing composite electrically small Egyptian axe dipole antenna. IEEE Trans. Antennas Propag. 2017, 65, 3827–3837. [Google Scholar] [CrossRef]
- Data Sheet of Adafruit 161 Photocell. Available online: https://au.mouser.com/datasheet/2/737/photocells-932884.pdf (accessed on 27 March 2019).
- Data Sheet of NTCG164BH153JT1 Thermistor. Available online: https://au.mouser.com/datasheet/2/400/pd_commercial_ntc-thermistor_ntcg_en-1290965.pdf (accessed on 27 March 2019).
- Balanis, C.A. Antenna Theory, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Data Sheet of AI-3245-TF-LW95-R Sounder. Available online: https://au.mouser.com/datasheet/2/334/AI-3245-TF-LW95-R-52659.pdf (accessed on 27 March 2019).
- Lin, W.; Ziolkowski, R.W.; Huang, J.Q. Electrically small, low profile, highly efficient, Huygens dipole rectennas for wirelessly powering Internet-of-Things (IoT) devices. IEEE Trans. Antennas Propag. 2019, in press. [Google Scholar] [CrossRef]
- Lin, W.; Ziolkowski, R.W. Electrically small Huygens antenna-based fully-integrated wireless power transfer and communication system. IEEE Access 2019, 7, 39762–39769. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Ziolkowski, R.W. Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas. Sensors 2019, 19, 1998. https://doi.org/10.3390/s19091998
Lin W, Ziolkowski RW. Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas. Sensors. 2019; 19(9):1998. https://doi.org/10.3390/s19091998
Chicago/Turabian StyleLin, Wei, and Richard W. Ziolkowski. 2019. "Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas" Sensors 19, no. 9: 1998. https://doi.org/10.3390/s19091998
APA StyleLin, W., & Ziolkowski, R. W. (2019). Wirelessly Powered Light and Temperature Sensors Facilitated by Electrically Small Omnidirectional and Huygens Dipole Antennas. Sensors, 19(9), 1998. https://doi.org/10.3390/s19091998