Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- A calibration part in a lab setting with children and adults walking and running on a treadmill at different speeds while measuring acceleration and oxygen consumption. The results of this part enabled assessment of agreement between the outputs from the different frequency filters for the free-living part.
- A free-living part with children and adults where the effect of different frequency filters applied to accelerometer data was explored. We anticipated that the wider filters would contribute to disproportionally more acceleration at higher intensities. Furthermore, noise would have larger effect at the sedentary level and contribute to misclassification of sedentary to light activity.
2.2. Study Sample
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Calibration
3.2. Free-living
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Atienza, A.A.; Moser, R.P.; Perna, F.; Dodd, K.; Ballard-Barbash, R.; Troiano, R.P.; Berrigan, D. Self-reported and objectively measured activity related to biomarkers using NHANES. Med. Sci. Sports Exerc. 2011, 43, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al. Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Nyström, C.D.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Wijndaele, K.; Westgate, K.; Stephens, S.K.; Blair, S.N.; Bull, F.C.; Chastin, S.F.; Dunstan, D.W.; Ekelund, U.; Esliger, D.W.; Freedson, P.S.; et al. Utilization and harmonization of adult accelerometry data: Review and expert consensus. Med. Sci. Sports Exerc. 2015, 47, 2129–2139. [Google Scholar] [CrossRef] [PubMed]
- Brønd, J.C.; Andersen, L.B.; Arvidsson, D. Generating actigraph counts from raw acceleration recorded by an alternative monitor. Med. Sci. Sports Exerc. 2017, 49, 2351–2360. [Google Scholar] [CrossRef]
- John, D.; Miller, R.; Kozey-Keadle, S.; Caldwell, G.; Freedson, P. Biomechanical examination of the ‘plateau phenomenon’ in actigraph vertical activity counts. Physiol. Meas. 2012, 33, 219–230. [Google Scholar] [CrossRef]
- Trost, S.G.; Ward, D.S.; Moorehead, S.M.; Watson, P.D.; Riner, W.; Burke, J.R. Validity of the computer science and applications (CSA) activity monitor in children. Med. Sci. Sports Exerc. 1998, 30, 629–633. [Google Scholar]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the computer science and applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef]
- Hildebrand, M.; van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Fridolfsson, J.; Börjesson, M.; Arvidsson, D.; Fridolfsson, J.; Börjesson, M.; Arvidsson, D. A biomechanical re-examination of physical activity measurement with accelerometers. Sensors 2018, 18, 3399. [Google Scholar] [CrossRef]
- Schepens, B.; Willems, P.A.; Cavagna, G.A. The mechanics of running in children. J. Physiol. 1998, 509, 927–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepens, B.; Bastien, G.; Heglund, N.; Willems, P. Mechanical work and muscular efficiency in walking children. J. Exp. Biol. 2004, 207, 587–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouten, C.; Westerterp, K.; Verduin, M.; Janssen, J. Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med. Sci. Sports Exerc. 1994, 23, 21–27. [Google Scholar] [CrossRef]
- Vähä-Ypyä, H.; Vasankari, T.; Husu, P.; Suni, J.; Sievänen, H. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clin. Physiol. Funct. Imaging 2015, 35, 64–70. [Google Scholar] [CrossRef] [PubMed]
- van Hees, V.T.; Gorzelniak, L.; Leon, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef]
- Olsson, S.J.G. Studies of Physical Activity in the Swedish Population. Ph.D. Thesis, Swedish School of Sport and Health Sciences, Stockholm, Sweden, 2016. [Google Scholar]
- Ahrens, W.; Siani, A.; Adan, R.; De Henauw, S.; Eiben, G.; Gwozdz, W.; Hebestreit, A.; Hunsberger, M.; Kaprio, J.; Krogh, V.; et al. Cohort profile: The transition from childhood to adolescence in European children–how I.Family extends the IDEFICS cohort. Int. J. Epidemiol. 2017, 46, 1394–1395j. [Google Scholar] [CrossRef] [PubMed]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Kamronn, S. Actigraph_gt3x_extract. Available online: https://github.com/simonkamronn/actigraph_gt3x_extract (accessed on 1 November 2018).
- Urbanek, J.K.; Zipunnikov, V.; Harris, T.; Fadel, W.; Glynn, N.; Koster, A.; Caserotti, P.; Crainiceanu, C.; Harezlak, J. Prediction of sustained harmonic walking in the free-living environment using raw accelerometry data. Physiol. Meas. 2018, 39, 02NT02. [Google Scholar] [CrossRef] [Green Version]
- van Hees, V.T.; Thaler-Kall, K.; Wolf, K.-H.; Brønd, J.C.; Bonomi, A.; Schulze, M.; Vigl, M.; Morseth, B.; Hopstock, L.A.; Gorzelniak, L.; et al. Challenges and opportunities for harmonizing research methodology: Raw accelerometry. Methods Inf. Med. 2016, 55, 525–532. [Google Scholar] [CrossRef]
- Tryon, W.W.; Williams, R. Fully proportional actigraphy: A new instrument. Behav. Res. Methods Instrum. Comput. 1996, 28, 392–403. [Google Scholar] [CrossRef] [Green Version]
- 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report; U.S. Department of Health and Human Services: Washington, DC, USA, 2018; p. 779.
- Aadland, E.; Andersen, L.B.; Anderssen, S.A.; Resaland, G.K.; Kvalheim, O.M. Associations of volumes and patterns of physical activity with metabolic health in children: A multivariate pattern analysis approach. Prev. Med. 2018, 115, 12–18. [Google Scholar] [CrossRef]
- Chinapaw, M.; Klakk, H.; Møller, N.C.; Andersen, L.B.; Altenburg, T.; Wedderkopp, N. Total volume versus bouts: Prospective relationship of physical activity and sedentary time with cardiometabolic risk in children. Int. J. Obes. 2018, 42, 1733–1742. [Google Scholar] [CrossRef]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Butte, N.F.; Wong, W.W.; Lee, J.S.; Adolph, A.L.; Puyau, M.R.; Zakeri, I.F. Prediction of energy expenditure and physical activity in preschoolers. Med. Sci. Sports Exerc. 2014, 46, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Jago, R.; Zakeri, I.; Baranowski, T.; Watson, K. Decision boundaries and receiver operating characteristic curves: New methods for determining accelerometer cutpoints. J. Sports Sci. 2007, 25, 937–944. [Google Scholar] [CrossRef]
- McMurray, R.G.; Butte, N.F.; Crouter, S.E.; Trost, S.G.; Pfeiffer, K.A.; Bassett, D.R.; Puyau, M.R.; Berrigan, D.; Watson, K.B.; Fulton, J.E.; et al. Exploring metrics to express energy expenditure of physical activity in youth. PLoS ONE 2015, 10, e0130869. [Google Scholar] [CrossRef] [PubMed]
- Strączkiewicz, M.; Urbanek, J.; Fadel, W.; Crainiceanu, C.; Harezlak, J. Automatic car driving detection using raw accelerometry data. Physiol. Meas. 2016, 37, 1757–1769. [Google Scholar] [CrossRef]
- Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 77. [Google Scholar] [CrossRef]
- Buchan, D.S.; McLellan, G. Comparing physical activity estimates in children from hip-worn Actigraph GT3X+ accelerometers using raw and counts based processing methods. J. Sports Sci. 2019, 37, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Nyström, C.D.; Henriksson, P.; Cadenas-Sanchez, C.; Ortega, F.B.; Löf, M. Accelerometer data processing and energy expenditure estimation in preschoolers. Med. Sci. Sports Exerc. 2019, 51, 590–598. [Google Scholar] [CrossRef] [PubMed]
Filter | Age Group | 1.5 METs (LPA) | 3 METs (MPA) | 6 METs (VPA) | 9 METs (VVPA) |
---|---|---|---|---|---|
Children | ActiGraph | 16.1 (531) | 63.0 (2100) | 171.0 (5865) | 242.9 (8417) |
4 Hz | 37.4 (3798) | 158.5 (16,326) | 557.9 (59,164) | 858.8 (91,721) | |
10 Hz | 51.9 (5345) | 214.1 (22,275) | 703.5 (74,836) | 1075.4 (115,022) | |
High-pass | 56.8 (5873) | 238.2 (24,858) | 782.1 (83,313) | 1186.3 (126,992) | |
Adults | ActiGraph | 19.1 (632) | 76.9 (2570) | 208.1 (7164) | 300.2 (10,494) |
4 Hz | 30.8 (3113) | 133.7 (13,692) | 498.1 (52,709) | 881.2 (94,188) | |
10 Hz | 38.9 (3983) | 167.2 (17,284) | 582.3 (61,748) | 994.1 (106,307) | |
High-pass | 39.3 (4026) | 170.0 (17,595) | 606.2 (64,329) | 1050.4 (112,371) |
Age Group | Filter | SED | LPA | MPA | VPA | VVPA |
---|---|---|---|---|---|---|
Children | ActiGraph | 68% | 11% | 13% | 3.5% | 4.0% |
4 Hz | 69% | 16% | 13% | 1.2% | 0.49% | |
10 Hz | 71% | 16% | 12% | 0.91% | 0.44% | |
High-pass | 73% | 16% | 9.8% | 0.75% | 0.37% | |
Adults | ActiGraph | 73% | 15% | 12% | 0.53% | 0.12% |
4 Hz | 72% | 17% | 11% | 0.29% | 0.072% | |
10 Hz | 73% | 18% | 9.4% | 0.26% | 0.096% | |
High-pass | 74% | 16% | 9.0% | 0.25% | 0.092% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fridolfsson, J.; Börjesson, M.; Buck, C.; Ekblom, Ö.; Ekblom-Bak, E.; Hunsberger, M.; Lissner, L.; Arvidsson, D. Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements. Sensors 2019, 19, 2186. https://doi.org/10.3390/s19092186
Fridolfsson J, Börjesson M, Buck C, Ekblom Ö, Ekblom-Bak E, Hunsberger M, Lissner L, Arvidsson D. Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements. Sensors. 2019; 19(9):2186. https://doi.org/10.3390/s19092186
Chicago/Turabian StyleFridolfsson, Jonatan, Mats Börjesson, Christoph Buck, Örjan Ekblom, Elin Ekblom-Bak, Monica Hunsberger, Lauren Lissner, and Daniel Arvidsson. 2019. "Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements" Sensors 19, no. 9: 2186. https://doi.org/10.3390/s19092186
APA StyleFridolfsson, J., Börjesson, M., Buck, C., Ekblom, Ö., Ekblom-Bak, E., Hunsberger, M., Lissner, L., & Arvidsson, D. (2019). Effects of Frequency Filtering on Intensity and Noise in Accelerometer-Based Physical Activity Measurements. Sensors, 19(9), 2186. https://doi.org/10.3390/s19092186