High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications
Abstract
:1. Introduction
2. Design of Proposed Antenna
3. Parametric Study
3.1. Designing Steps
3.2. Microstrip Line Width (Wo)
3.3. Effect of Radiating Element (W2)
3.4. Effect of Ground Width (Lg)
4. Operation of Antenna
5. Simulation and Measured Results
5.1. Simulated Results
5.2. Measured Results
6. Time Domain Performance
7. Comparison
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Federal Communications Commission. First Report and Order, Revision of Part 15 of the Commission’s Rules Regarding Ultra Wide Band Transmission Systems; Federal Communications Commission: Washington, DC, USA, 2002. [Google Scholar]
- Nazeri, A.H.; Falahati, A.; Edwards, R.M. A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU—Int. J. Electron. Commun. 2019, 101, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Lan, L.; Han, Y.; Liang, F.; Zhang, Q.; Wang, B.Z. Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications. IEEE Photonics Technol. Lett. 2014, 26, 2173–2176. [Google Scholar] [CrossRef]
- Mandal, T.; Das, S. Microstrip feed spanner shape monopole antennas for ultra wide band applications. J. Microw. Optoelectron. Electromagn. Appl. 2013, 12, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Abdelhamid, M.M.; Allam, A.M. Detection of lung cancer using ultra wide band antenna. In Proceedings of the 2016 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 14–15 November 2016; pp. 1–5. [Google Scholar]
- Mahmud, M.; Islam, M.T.; Samsuzzaman, M. A high performance UWB antenna design for microwave imaging system. Microw. Opt. Technol. Lett. 2016, 58, 1824–1831. [Google Scholar] [CrossRef]
- Zhao, D.; Yang, C.; Zhu, M.; Chen, Z. Design of WLAN/LTE/UWB antenna with improved pattern uniformity using ground-cooperative radiating structure. IEEE Trans. Antennas Propag. 2016, 64, 271–276. [Google Scholar] [CrossRef]
- Dubost, G.; Zisler, S. Antennas a Large Band. Masson: New York, NY, USA, 1976. [Google Scholar]
- Pandey, A.; Singhania, C.; Mishra, R. Design of A Compact Dual Band Meandering Line Applications. In Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Paralakhemundi, India, 3–5 October 2016; pp. 830–833. [Google Scholar]
- Kumar, S.; Kim, K.W.; Choi, H.C.; Saxena, S.; Tiwari, R.; Khandelwal, M.K.; Palaniswamy, S.K.; Kanaujia, B.K. A low profile circularly polarized UWB antenna with integrated GSM band for wireless communication. AEU—Int. J. Electron. Commun. 2018, 93, 224–232. [Google Scholar] [CrossRef]
- Ojaroudi, N.; Mehranpour, M. Fan-shaped antenna with Triband-Notched Characteristics for UWB Application. Microw. Opt. Technol. Lett. 2014, 56, 2426–2430. [Google Scholar] [CrossRef]
- Lizzi, L.; Azaro, R.; Oliveri, G.; Massa, A. Printed UWB antenna operating over multiple mobile wireless standards. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 1429–1432. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. Asymmetric U-shaped printed monopole antenna embedded with T-shaped strip for bluetooth, WLAN/WiMAX applications. Wirel. Netw. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- Paga, P.; Nagaraj, H.C.; Rukmini, T.S.; Nithin, N.E. Design and fabrication of a microstrip printed T monopole antenna for ISM application. In Proceedings of the 2015 Internationl Conference on Microwave, Optical and Communication Engineering, Bhubaneswar, India, 18–20 December 2015; IEEE: Piscataway, NJ, USA, 2016; pp. 264–267. [Google Scholar]
- Wu, Q.; Jin, R.; Geng, J.; Ding, M. Printed omni-directional UWB monopole antenna with very compact size. IEEE Trans. Antennas Propag. 2008, 56, 896–899. [Google Scholar] [CrossRef]
- Rostamzadeh, M.; Mohamadi, S.; Nourinia, J.; Ghobadi, C.; Ojaroudi, M. Square monopole antenna for UWB applications with novel rod-shaped parasitic structures and novel V-shaped slots in the ground plane. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 446–449. [Google Scholar] [CrossRef]
- Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Sedghi, T.; Aribi, T.; Virdee, B.S. UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 504–507. [Google Scholar] [CrossRef]
- Tripathi, S.; Yadav, S.; Mohan, A. Hexagonal fractal ultra-wideband antenna using Koch geometry with bandwidth enhancement. IET Microw. Antennas Propag. 2014, 8, 1445–1450. [Google Scholar] [CrossRef]
- Oteng Gyasi, K.; Wen, G.; Inserra, D.; Affum, E.A.; Huang, Y.; Li, J.; Basit, M.A.; Zhang, H. A Compact Broadband Circularly Polarized Slot Antenna with Two Linked Rectangular Slots and an Inverted-F Feed Line. IEEE Trans. Antennas Propag. 2018, 66, 7374–7377. [Google Scholar] [CrossRef]
- Nosrati, M.; Tavassolian, N. Miniaturized Circularly Polarized Square Slot Antenna with Enhanced Axial-Ratio Bandwidth Using an Antipodal Y-strip. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 817–820. [Google Scholar] [CrossRef]
- Selek, A.; Turkmen, C.; Secmen, M. Compact planar folded monopole antenna with coupling mechanism for Quad ISM band, GNSS and UMTS applications. In Proceedings of the 2018 11th German Microwave Conference (GeMiC), Freiburg, Germany, 12–14 March 2018; pp. 211–214. [Google Scholar]
- Mohandoss, S.; Thipparaju, R.R.; Balarami Reddy, B.N.; Palaniswamy, S.K.; Marudappa, P. Fractal based ultra-wideband antenna development for wireless personal area communication applications. AEU—Int. J. Electron. Commun. 2018, 93, 95–102. [Google Scholar] [CrossRef]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. A modified microstrip line fed compact UWB antenna for WiMAX/ISM/WLAN and wireless communications. AEU—Int. J. Electron. Commun. 2019, 104, 58–65. [Google Scholar] [CrossRef]
- Hussain, M.J.; Faraque, M.R.I.; Islam, M.T. Design of a patch antenna for ultra wide band applications. Microw. Opt. Technol. Lett. 2016, 58, 2152–2156. [Google Scholar] [CrossRef]
- Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E. A new planar broadband antenna based on meandered line loops for portable wireless communication devices. Radio Sci. 2016, 51, 1109–1117. [Google Scholar] [CrossRef]
- Jhajharia, T.; Tiwari, V.; Yadav, D.; Rawat, S.; Bhatnagar, D. Wideband circularly polarised antenna with an asymmetric meandered-shaped monopole and defected ground structure for wireless communication. IET Microw. Antennas Propag. 2018, 12, 1554–1558. [Google Scholar] [CrossRef]
- Pozar, D.M. On the design of low sidelobe microstrip arrays. In Proceedings of the Digest on Antennas and Propagation Society International Symposium, San Jose, CA, USA, 26–30 June 1989; Volume 2, pp. 905–908. [Google Scholar]
- Rahman, S.U.; Cao, Q.; Hussain, I.; Khalil, H.; Zeeshan, M.; Nazar, W. Design of rectangular patch antenna array for 5G wireless communication. Prog. Electromagn. Res. Symp. 2017, 1558–1562. [Google Scholar]
- Biswas, B.; Ghatak, R.; Poddar, D.R. A Fern Fractal Leaf Inspired Wideband Antipodal Vivaldi Antenna for Microwave Imaging System. IEEE Trans. Antennas Propag. 2017, 65, 6126–6129. [Google Scholar] [CrossRef]
- Quintero, G.; Zurcher, J.F.; Skrivervik, A.K. System fidelity factor: A new method for comparing UWB antennas. IEEE Trans. Antennas Propag. 2011, 59, 2502–2512. [Google Scholar]
- Sahoo, S.; Mishra, L.P.; Mohanty, M.N.; Mishra, R.K. Design of compact UWB monopole planar antenna with a modified partial ground plane. Microw. Opt. Technol. Lett. 2018, 60, 578–583. [Google Scholar]
- Tiwari, R.N.; Singh, P.; Kanaujia, B.K. Small-size scarecrow-shaped CPW and microstrip-line-fed UWB antennas. J. Comput. Electron. 2018, 17, 1047–1055. [Google Scholar]
- Tu, Z.H.; Li, W.A.; Chu, Q.X. Single-layer differential cpw-fed notch-band tapered-slot UWB antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1296–1299. [Google Scholar]
- Paul, P.M.; Kandasamy, K.; Sharawi, M.S.; Majumder, B. Dispersion-Engineered Transmission Line Loaded Slot Antenna for UWB Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 323–327. [Google Scholar] [CrossRef]
Ref. No’s | Bandwidth (%) | Gain (dBi) | Dimension (mm3) | Efficiency (%) | Lower Frequency (GHz) | Bandwidth Ratio |
---|---|---|---|---|---|---|
[2] | 105 | 4.4 | 25 × 21 × 1.6 | 90 | 3.1 | 3.22:1 |
[11] | 138.3 | -- | 18 × 12 × 1.6 | -- | 2.8 | 6.2:1 |
[13] | 107.35 | 4.91 | 34 × 20 × 1.6 | 90 | 2.27 | 3.3:1 |
[17] | 129.24 | 3.6 | 14 × 18 × 1 | --- | 2.94 | 4.65:1 |
[18] | 122 | 6 | 31 × 28 × 1.6 | --- | 3 | 4.26:1 |
[22] | 135.2 | 4.85 | 32 × 32 × 1.6 | 79.21 | 2.9 | 5.17:1 |
[23] | 153 | 5 | 25 × 17 × 1.6 | 86 | 2.94 | 7.55:1 |
[24] | 119.48 | 6.1 | 35 × 24 × 1.6 | 82.22 | 3.1 | 3.97:1 |
[31] | 138.16 | 6 | 32 × 23 × 1.6 | --- | 3.2 | 5.47:1 |
[32] | 139.88 | 4.7 | 25 × 20 × 1.6 | --- | 2.86 | 5.65:1 |
[33] | 126 | 6.2 | 35 × 30 × 0.8 | 94 | 2.78 | 4.42 |
[34] | 138 | 5.8 | 50 × 50 × 1.52 | 88 | 2.1 | 5.47:1 |
Proposed antenna | 156 | 6.4 | 38 × 35 × 1.57 | 93 | 2.7 | 8.33:1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; He, W. High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications. Sensors 2020, 20, 115. https://doi.org/10.3390/s20010115
Ullah S, Ruan C, Sadiq MS, Haq TU, He W. High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications. Sensors. 2020; 20(1):115. https://doi.org/10.3390/s20010115
Chicago/Turabian StyleUllah, Shahid, Cunjun Ruan, Muhammad Shahzad Sadiq, Tanveer Ul Haq, and Wenlong He. 2020. "High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications" Sensors 20, no. 1: 115. https://doi.org/10.3390/s20010115
APA StyleUllah, S., Ruan, C., Sadiq, M. S., Haq, T. U., & He, W. (2020). High Efficient and Ultra Wide Band Monopole Antenna for Microwave Imaging and Communication Applications. Sensors, 20(1), 115. https://doi.org/10.3390/s20010115