A High-Resolution and Low-Complexity DOA Estimation Method with Unfolded Coprime Linear Arrays
Abstract
:1. Introduction
2. System Model
3. Proposed Method
3.1. Self-Covariance Matrix Reconstruction
3.2. DOA Estimation
4. Simulation and Analysis
4.1. Estimation Performance
4.2. Computational Complexity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DOA | Direction-of-arrival |
UCLA | Unfolded coprime linear array |
DOF | Degree of freedom |
MUSIC | Multiple Signal Classification |
ESPRIT | Estimation of Signal Parameters via Rotational Invariance Techniques |
ULA | Uniform linear array |
CLA | Coprime linear array |
AIC | Akaike Information Criterion |
MDL | Minimum Description Length |
RMSE | Root mean square error |
CRB | Cramér–Rao lower bound |
SNR | Signal-to-noise ratio |
References
- Krim, H.; Viberg, M. Two decades of array signal processing research. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Bencheikh, M.L.; Wang, Y.; He, H. Polynomial root finding technique for joint DOA DOD estimation in bistatic MIMO radar. Signal Process. 2010, 90, 2723–2730. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, Y.; Zheng, G.; Feng, C.; Tang, J. ESPRIT-like two-dimensional DOA estimation for monostatic MIMO radar with electromagnetic vector received sensors under the condition of gain and phase uncertainties and mutual coupling. Sensors 2017, 17, 2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Miao, C.; Zhao, Y.; Wu, W. An MIMO radar system based on the sparse-array and its frequency migration calibration method. Sensors 2019, 19, 3580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Kailath, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 984–995. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, P.P.; Pal, P. Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 2011, 59, 573–586. [Google Scholar] [CrossRef]
- Kou, J.; Li, M.; Jiang, C. A robust DOA estimator based on compressive sensing for coprime array in the presence of miscalibrated sensors. Sensors 2019, 19, 3538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Z.; Zhou, W. Direction-of-arrival estimation in coprime array using the ESPRIT-based method. Sensors 2019, 19, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 2015, 63, 1377–1390. [Google Scholar] [CrossRef]
- Liu, C.L.; Vaidyanathan, P.P. Remarks on the spatial smoothing step in coarray MUSIC. IEEE Signal Process. Lett. 2015, 22, 1438–1442. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, Z.; Gu, Y.; Shen, X. DECOM: DOA estimation with combined MUSIC for coprime array. In Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 24–26 October 2013; pp. 1–5. [Google Scholar]
- Sun, F.; Lan, P.; Gao, B. Partial spectral search-based DOA estimation method for co-prime linear arrays. Electron. Lett. 2015, 51, 2053–2055. [Google Scholar] [CrossRef]
- Sun, F.; Gao, B.; Chen, L.; Lan, P. A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays. Sensors 2016, 16, 1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Zhang, X.; Gong, P.; Zhai, H. DOA estimation for coprime linear arrays: An ambiguity-free method involving full DOFs. IEEE Commun. Lett. 2018, 22, 562–565. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Stoica, P.; Nehorai, A. Performance study of conditional and unconditional direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1783–1795. [Google Scholar] [CrossRef]
- Zhou, C.; Zhou, J. Direction-of-arrival estimation with coarray ESPRIT for coprime array. Sensors 2017, 17, 1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Yang, X.; Wang, Y. A High-Resolution and Low-Complexity DOA Estimation Method with Unfolded Coprime Linear Arrays. Sensors 2020, 20, 218. https://doi.org/10.3390/s20010218
He W, Yang X, Wang Y. A High-Resolution and Low-Complexity DOA Estimation Method with Unfolded Coprime Linear Arrays. Sensors. 2020; 20(1):218. https://doi.org/10.3390/s20010218
Chicago/Turabian StyleHe, Wei, Xiao Yang, and Yide Wang. 2020. "A High-Resolution and Low-Complexity DOA Estimation Method with Unfolded Coprime Linear Arrays" Sensors 20, no. 1: 218. https://doi.org/10.3390/s20010218
APA StyleHe, W., Yang, X., & Wang, Y. (2020). A High-Resolution and Low-Complexity DOA Estimation Method with Unfolded Coprime Linear Arrays. Sensors, 20(1), 218. https://doi.org/10.3390/s20010218