Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing †
Abstract
:1. Introduction
2. Working Principles
3. Experimental Procedures
3.1. Fabrication of the MZI Sensor
3.2. Spatial Frequency Analysis
3.3. Characterization
4. Results and Discussion
4.1. Refractive Index Sensing
4.2. Sensor Response and Recovery Times
4.3. Temperature Characterization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Parisi, J.; Sun, X.; Lei, Y. Solid-state gas sensors for high temperature applications a review. J. Mater. B Chem. 2014, 2, 9919–9943. [Google Scholar] [CrossRef]
- Moser, H.; Pölz, W.; Waclawek, J.P.; Ofner, J.; Lendl, B. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream. Anal. Bioanal. Chem. 2016, 409, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Li, Z.; Shi, J.; Zhang, F.; Zhou, X.; Li, Y.; Holmes, M.; Zhang, W.; Zou, X. Titanium dioxide-polyaniline/silk fibroin microfiber sensor for pork freshness evaluation. Sens. Actuators B Chem. 2018, 260, 465–474. [Google Scholar] [CrossRef]
- Aoni, R.A.; Ahmed, K.; Asaduzzaman, S.; Paul, B.K.; Ahmed, R. Development of Photonic Crystal Fiber-Based Gas/Chemical Sensors. Comput. Photonic Sens. 2018, 287–317. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.M.R.; Lopez-Amo, M. Photonic Crystal Fibers for Sensing Applications. J. Sens. 2012, 2012, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.J.J.; Wong, R.Y.-N.; Shum, P.P. Photonic Crystal Fiber–Based Interferometric Sensors. In Selected Topics on Optical Fiber Technologies and Applications; InTech: London, UK, 2018; pp. 22–41. [Google Scholar]
- Joe, H.-E.; Yun, H.; Jo, S.; Jun, M.B.; Min, B.-K. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Manuf. Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- Buric, M.P.; Chen, K.P.; Falk, J.; Woodruff, S.D. Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber. Appl. Opt. 2008, 47, 4255–4261. [Google Scholar] [CrossRef] [Green Version]
- AbdelGhani, A.; Chovelon, J.; Jaffrezic-Renault, N.; Ronot-Trioli, C.; Veillas, C.; Gagnaire, H. Surface plasmon resonance fibre-optic sensor for gas detection. Sens. Actuators B Chem. 1997, 39, 407–410. [Google Scholar] [CrossRef]
- Stewart, G.; Muhammad, F.; Culshaw, B. Sensitivity improvement for evanescent-wave gas sensors. Sens. Actuators B Chem. 1993, 11, 521–524. [Google Scholar] [CrossRef]
- Yang, X.; Chang, A.S.P.; Chen, B.; Gu, C.; Bond, T.C. Multiplexed gas sensing based on Raman spectroscopy in photonic crystal fiber. In Proceedings of the IEEE Photonics Conference 2012, Institute of Electrical and Electronics Engineers (IEEE), Burlingame, CA, USA, 23–27 September 2012; pp. 447–448. [Google Scholar]
- Wang, Y.; Wang, D.N.; Liao, C.R.; Hu, T.; Guo, J.; Wei, H. Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber. Opt. Lett. 2013, 38, 269–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, D.J.J.; Wang, Y.; Lim, J.L.; Zhang, T.; Milenko, K.; Chen, Z.; Jiang, M.; Wang, G.; Luan, F.; Shum, P.; et al. Novel Miniaturized Fabry–Perot Refractometer Based on a Simplified Hollow-Core Fiber with a Hollow Silica Sphere Tip. IEEE Sens. J. 2011, 12, 1239–1245. [Google Scholar] [CrossRef]
- Jha, R.; Villatoro, J.; Badenes, G. Ultrastable in reflection photonic crystal fiber modal interferometer for accurate refractive index sensing. Appl. Phys. Lett. 2008, 93, 191106. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, J.; Rong, Q.; Feng, D.; Du, Y.; Zhang, X.; Su, D.; Zhou, L.; Feng, Z.; Qiao, X.; et al. A Hybrid Fiber Interferometer for Simultaneous Refractive Index and Temperature Measurements Based on Fabry–Perot/Michelson Interference. IEEE Sens. J. 2013, 13, 2039–2044. [Google Scholar] [CrossRef]
- Liu, Q.; Xin, L.; Wu, Z.; Xing, L. Refractive index sensor of a photonic crystal fiber Sagnac interferometer based on variable polarization states. Appl. Phys. Express 2019, 12, 062009. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 2012, 20, 11109–11120. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Yang, J.; Tao, C.; Guo, X.; Bao, H.; Yin, Y.; Chen, H.; Zhu, Y. An in-line Mach-Zehnder Interferometer Using Thin-core Fiber for Ammonia Gas Sensing with High Sensitivity. Sci. Rep. 2017, 7, 44994. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.Y.; Kim, M.J.; Lee, B.-H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahsani, V.; Melo, L.; Wild, P.; Jun, M.B.G.; Melo, L. Miniaturized Tapered Photonic Crystal Fiber Mach-Zehnder Interferometer for Enhanced Refractive Index Sensing. IEEE Sens. J. 2016, 16, 1. [Google Scholar] [CrossRef]
- Ahsani, V.; Ahmed, F.; Jun, M.B.; Bradley, C. Tapered Fiber-Optic Mach-Zehnder Interferometer for Ultra-High Sensitivity Measurement of Refractive Index. Sensors 2019, 19, 1652. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, F.; Ahsani, V.; Saad, A.; Jun, M.B.G. Bragg Grating Embedded in Mach-Zehnder Interferometer for Refractive Index and Temperature Sensing. IEEE Photon Technol. Lett. 2016, 28, 1968–1971. [Google Scholar] [CrossRef]
- Hu, L.M.; Chan, C.C.; Dong, X.; Wang, Y.P.; Zu, P.; Wong, W.C.; Qian, W.W.; Li, T. Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer. IEEE Photon J. 2011, 4, 114–118. [Google Scholar] [CrossRef]
- Yao, B.; Wu, Y.; Cheng, Y.; Zhang, A.; Gong, Y.; Rao, Y.-J.; Wang, Z.-G.; Chen, Y. All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sens. Actuators B Chem. 2014, 194, 142–148. [Google Scholar] [CrossRef]
- Hao, T.; Chiang, K.S. Graphene-Based Ammonia-Gas Sensor Using In-Fiber Mach-Zehnder Interferometer. IEEE Photon Technol. Lett. 2017, 29, 2035–2038. [Google Scholar] [CrossRef]
- Duan, D.; Rao, Y.; Xu, L.-C.; Zhu, T.; Wu, D.; Yao, J. In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity. Sens. Actuators B Chem. 2011, 160, 1198–1202. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, Y.; Wang, C.; Mu, Z.; Liu, Y.; Lin, J. A review of photonic crystal fiber sensor applications for different physical quantities. Appl. Spectrosc. Rev. 2017, 53, 486–502. [Google Scholar] [CrossRef]
- Tao, C.; Wei, H.; Feng, W.-L. Photonic crystal fiber in-line Mach-Zehnder interferometer for explosive detection. Opt. Express 2016, 24, 2806–2817. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, L.; Che, X.; Huang, J.; Li, X.; Chen, W. Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano-film incorporating cryptophane A. Sens. Actuators B Chem. 2016, 235, 717–722. [Google Scholar] [CrossRef]
- Cregan, R.F. Single-Mode Photonic Band Gap Guidance of Light in Air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Skorobogatiy, M. Liquid-core low-refractive-index-contrast Bragg fiber sensor. Appl. Phys. Lett. 2011, 98, 201114. [Google Scholar] [CrossRef]
- Cubillas, A.M.; Silva-Lopez, M.; Lázaro, J.M.; Conde, O.M.; Petrovich, M.N.; López-Higuera, J.M. Detection of methane at 1670-nm band with a hollow-core photonic bandgap fiber. Photonics Eur. 2008, 6990, 69900. [Google Scholar]
- Jin, W.; Ho, H.; Cao, Y.; Ju, J.; Qi, L. Gas detection with micro- and nano-engineered optical fibers. Opt. Fiber Technol. 2013, 19, 741–759. [Google Scholar] [CrossRef] [Green Version]
- Wynne, R.; Barabadi, B.; Creedon, K.J.; Ortega, A. Sub-Minute Response Time of a Hollow-Core Photonic Bandgap Fiber Gas Sensor. J. Light. Technol. 2009, 27, 1590–1596. [Google Scholar] [CrossRef]
- Li, X.; Pawłat, J.; Liang, J.; Xu, G.; Ueda, T. Fabrication of Photonic Bandgap Fiber Gas Cell Using Focused Ion Beam Cutting. Jpn. J. Appl. Phys. 2009, 48, 06FK05. [Google Scholar] [CrossRef]
- Wang, D.N. Micro-engineered optical fiber sensors fabricated by femtosecond laser micromachining. Internat. Opt. Fabricat. Test. 2012. [Google Scholar] [CrossRef] [Green Version]
- Andrews, N.L.P.; Ross, R.; Munzke, D.; Van Hoorn, C.; Brzezinski, A.; Barnes, J.A.; Reich, O.; Loock, H.-P. In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber. Opt. Express 2016, 24, 14086. [Google Scholar] [CrossRef]
- Shavrin, I.; Novotny, S.; Shevchenko, A.; Ludvigsen, H. Gas refractometry using a hollow-core photonic bandgap fiber in a Mach-Zehnder-type interferometer. Appl. Phys. Lett. 2012, 100, 51106. [Google Scholar] [CrossRef]
- Ahmed, F.; Ahsani, V.; Nazeri, K.; Marzband, E.; Bradley, C.; Toyserkani, E.; Jun, M.B.G. Monitoring of Carbon Dioxide Using Hollow-Core Photonic Crystal Fiber Mach-Zehnder Interferometer. Sensors 2019, 19, 3357. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, K.; Ahsani, V.; Ahmed, F.; Joe, H.-E.; Jun, M.; Bradley, C. Experimental comparison of the effect of the structure on MZI fiber gas sensor performance. In Proceedings of the 2019 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Institute of Electrical and Electronics Engineers (IEEE), Victoria, BC, Canada, 21–23 August 2019. [Google Scholar]
- Xiao, G.; Adnet, A.; Zhang, Z.; Sun, F.G.; Grover, C.P. Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor. Sens. Actuators A Phys. 2005, 118, 177–182. [Google Scholar] [CrossRef]
- Benabid, F.; Roberts, P. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt. 2011, 58, 87–124. [Google Scholar] [CrossRef]
- Cordeiro, C.M.D.B.; Franco, M.; Chesini, G.; Barretto, E.C.S.; Lwin, R.; Cruz, C.H.D.B.; Large, M.C.J. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express 2006, 14, 13056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhi-Guo, Z.; Fang-Di, Z.; Min, Z.; Pei-Da, Y. Gas sensing properties of index-guided PCF with air-core. Opt. Laser Technol. 2008, 40, 167–174. [Google Scholar] [CrossRef]
- Tao, C.; Li, X.; Yang, J.; Shi, Y. Optical fiber sensing element based on luminescence quenching of silica nanowires modified with cryptophane-A for the detection of methane. Sens. Actuators B Chem. 2011, 156, 553–558. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Guo, M.; Zhao, Y. Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology. Sens. Actuators B Chem. 2016, 222, 159–165. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, S.; Luo, Y.; Chen, Z.; Xiong, S.; Wan, L.; Huang, X.; Huang, B.; Feng, Y.; He, M.; et al. Ultrasensitive Mach-Zehnder Interferometric Temperature Sensor Based on Liquid-Filled D-Shaped Fiber Cavity. Sensors 2018, 18, 1239. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Fang, G.; Liang, T.; Hong, Y.; Tan, Q.; Chen, X.; Liu, W.; Xue, C.; Liu, J.; Zhang, W.; et al. Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application. Sens. Actuators B Chem. 2017, 244, 226–232. [Google Scholar] [CrossRef]
- Ding, W.; Andrews, S.R.; Birks, T.A.; Maier, S.A. Modal coupling in fiber tapers decorated with metallic surface gratings. Opt. Lett. 2006, 31, 2556–2558. [Google Scholar] [CrossRef]
- Wang, R.; Qiao, X. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. Appl. Opt. 2014, 53, 7724–7728. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Novel fiber Bragg grating assisted plasmon-polariton for bio-medical refractive-index sensors. J. Mater. Sci. Mater. Electron. 2007, 18, 327–330. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Coelho, L.; Schuster, K.; Kobelke, J.; Santos, J.L.; Frazão, O. Fabry–Perot cavity based on a diaphragm-free hollow-core silica tube. Opt. Lett. 2011, 36, 4029–4031. [Google Scholar] [CrossRef]
Sensor | HC-PCF Length | Spectral Shift (pm) in Helium | Spectral Shift (pm) in Methane | Spectral Shift (pm) in Argon | RI Sensitivity (nm/RIU) |
---|---|---|---|---|---|
A | 4.97 mm | 780 | 440 (negative) | 45 | 3019 |
B | 4.73 mm | 1060 | 600 (negative) | 70 | 4300 |
C | 3.30 mm | 1300 | 618 (negative) | 100 | 4629 |
Optical Structure | RI Range | RI Sensitivity (nm/RIU) | Reference |
---|---|---|---|
Proposed HC-PCF MZI | 1.000034–1.000449 | 4629 | This work |
HC-PCF MZI | 1.0000–1.0005 | 1233 | [37] |
Fabry-Perot (FP) based on hollow silica tube | 1.00027–1.00189 1.00007–1.00051 | 1546 | [48] |
Surface plasmon resonance (SPR) with metallic surface grating (tapered SMF) | 1–1.41 | 500 | [49] |
Hybrid optical fiber FP interferometer | 1.0005–1.00275 | 560 | [50] |
SPR based on fiber grating in multi-mode fiber | 1–1.33 | 280 | [51] |
Cavity based FP | 1.0000–1.0025 | 1053 | [52] |
Open cavity MZI | 1–1.02 | 3402 | [26] |
HC-PCF Length (mm) | A (4.97) | B (4.73) | C (3.30) |
---|---|---|---|
Helium: response (s)/recovery (s) | 50/50 | 50/55 | 57/57 |
Methane: response (s)/recovery (s) | 32/39 | 44/46 | 46/56 |
Argon: response (s)/recovery (s) | 37/44 | 62/49 | 110/100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazeri, K.; Ahmed, F.; Ahsani, V.; Joe, H.-E.; Bradley, C.; Toyserkani, E.; Jun, M.B.G. Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing. Sensors 2020, 20, 2807. https://doi.org/10.3390/s20102807
Nazeri K, Ahmed F, Ahsani V, Joe H-E, Bradley C, Toyserkani E, Jun MBG. Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing. Sensors. 2020; 20(10):2807. https://doi.org/10.3390/s20102807
Chicago/Turabian StyleNazeri, Kaveh, Farid Ahmed, Vahid Ahsani, Hang-Eun Joe, Colin Bradley, Ehsan Toyserkani, and Martin B. G. Jun. 2020. "Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing" Sensors 20, no. 10: 2807. https://doi.org/10.3390/s20102807
APA StyleNazeri, K., Ahmed, F., Ahsani, V., Joe, H. -E., Bradley, C., Toyserkani, E., & Jun, M. B. G. (2020). Hollow-Core Photonic Crystal Fiber Mach–Zehnder Interferometer for Gas Sensing. Sensors, 20(10), 2807. https://doi.org/10.3390/s20102807