Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Enzyme Preparation and Activity Evaluation
2.3. Fabrication of Lactate Sensors and Evaluation of the Sensor Response
2.4. Evaluation of Response Currents of Lactate Sensors with Different Application Potentials
2.5. Evaluation of Storage Stability of Lactate Sensors
2.6. Evaluation of Lactate Sensors toward Interferences
2.7. Employing mPES as an Electron Mediator for Other Enzyme Sensors
3. Results
3.1. Construction of a Disposable Lactate Sensor
3.2. Optimization of Operation Potentials
3.3. Interference of Common Redox Substances
3.4. Storage Stability of the Lactate Sensors
3.5. mPES as an Electron Mediator for Other Enzyme Sensors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Monteiro, T.; Almeida, G. Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems. Crit. Rev. Anal. Chem. 2018, 49, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.D.; Wallis, J.O.; Azari, M.R. Purification and properties of Aerococcus viridans lactate oxidase. Biochem. Biophys. Res. Commun. 1989, 164, 919–926. [Google Scholar] [CrossRef]
- Maeda-Yorita, K.; Aki, K.; Sagai, H.; Misaki, H.; Massey, V. L-lactate oxidase and L-lactate monooxygenase: Mechanistic variations on a common structural theme. Biochim. 1995, 77, 631–642. [Google Scholar] [CrossRef]
- Leiros, I.; Wang, E.; Rasmussen, T.; Oksanen, E.; Repo, H.; Petersen, S.B.; Heikinheimo, P.; Hough, E. The 2.1 Å structure of Aerococcus viridans L-lactate oxidase (LOX). Acta Crystallogr. Sect. F Struct. Boil. Cryst. Commun. 2006, 62, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Umena, Y.; Yorita, K.; Matsuoka, T.; Kita, A.; Fukui, K.; Morimoto, Y. The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1 Å resolution reveals the mechanism of strict substrate recognition. Biochem. Biophys. Res. Commun. 2006, 350, 249–256. [Google Scholar] [CrossRef]
- Li, S.J.; Umena, Y.; Yorita, K.; Matsuoka, T.; Kita, A.; Fukui, K.; Morimoto, Y. Crystallographic study on the interaction of L-lactate oxidase with pyruvate at 1.9 Å resolution. Biochem. Biophys. Res. Commun. 2007, 358, 1002–1007. [Google Scholar] [CrossRef]
- Karube, I.; Matsunaga, T.; Teraoka, N.; Suzuki, S. Microbioassay of phenylalanine in blood sera with a lactate electrode. Anal. Chim. Acta 1980, 119, 271–276. [Google Scholar] [CrossRef]
- Matsunaga, T.; Karube, I.; Teraoka, N.; Suzuki, S. Determination of cell numbers of lactic acid producing bacteria by lactate sensor. Appl. Microbiol. Biotechnol. 1982, 16, 157–160. [Google Scholar] [CrossRef]
- Clark, L.C., Jr.; Noyes, L.K.; Grooms, T.A.; Moore, M.S. Rapid micromeasurement of lactate on whole blood. Crit. Care. Med. 1984, 12, 461–464. [Google Scholar] [CrossRef]
- Lactate Pro 2. Available online: https://www.pmda.go.jp/PmdaSearch/ivdDetail/ResultDataSetPDF/100639_25A2X00001000013_A_01_03 (accessed on 9 May 2020).
- Nova StatStrip® Lactate Test Strips-For Use Only with the Nove StatStrip Lactate Hospital Meter. Available online: https://www.woodleyequipment.com/docs/product_insert_lactate_meter_test_strip.pdf (accessed on 9 May 2020).
- Spohn, U.; Narasaiah, D.; Gorton, L. Reagentless Hydrogen Peroxide and L-Lactate Sensors Based on Carbon Paste Electrodes modified with different peroxidases and lactate oxidases. J. Prakt. Chem. 1997, 339, 607–614. [Google Scholar] [CrossRef]
- Moser, I. Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine. Biosens. Bioelectron. 2002, 17, 297–302. [Google Scholar] [CrossRef]
- Thomas, N.; Lähdesmäki, I.; Parviz, B. A contact lens with an integrated lactate sensor. Sens. Actuators B Chem. 2012, 162, 128–134. [Google Scholar] [CrossRef]
- Taurino, I.; Reiss, R.; Richter, M.; Fairhead, M.; Thöny-Meyer, L.; De Micheli, G.; Carrara, S. Comparative study of three lactate oxidases from Aerococcus viridans for biosensing applications. Electrochim. Acta 2013, 93, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Andrus, L.P.; Unruh, R.; Wisniewski, N.A.; McShane, M.J. Characterization of Lactate Sensors Based on Lactate Oxidase and Palladium Benzoporphyrin Immobilized in Hydrogels. Biosensors 2015, 5, 398–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Antiochia, R.; Sharma, S. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 2019, 123, 152–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraka, K.; Kojima, K.; Lin, C.-E.; Tsugawa, W.; Asano, R.; La Belle, J.; Sode, K. Minimizing the effects of oxygen interference on L-lactate sensors by a single amino acid mutation in Aerococcus viridans L-lactate oxidase. Biosens. Bioelectron. 2018, 103, 163–170. [Google Scholar] [CrossRef]
- Loew, N.; Fitriana, M.; Hiraka, K.; Sode, K.; Tsugawa, W. Characterization of electron mediator preference of Aerococcus viridans-derived lactate oxidase for use in disposable enzyme sensor strips. Sens. Mater. 2017, 29, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Okurita, M.; Suzuki, N.; Loew, N.; Yoshida, H.; Tsugawa, W.; Mori, K.; Kojima, K.; Klonoff, D.C.; Sode, K. Engineered fungus derived FAD-dependent glucose dehydrogenase with acquired ability to utilize hexaammineruthenium(III) as an electron acceptor. Bioelectrochemistry 2018, 123, 62–69. [Google Scholar] [CrossRef]
- Nieh, C.-H.; Tsujimura, S.; Shirai, O.; Kano, K. Electrostatic and steric interaction between redox polymers and some flavoenzymes in mediated bioelectrocatalysis. J. Electroanal. Chem. 2013, 689, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Loew, N.; Tsugawa, W.; Nagae, D.; Kojima, K.; Sode, K. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors. Sensors 2017, 17, 2636. [Google Scholar] [CrossRef] [Green Version]
- Tsuruoka, N.; Sadakane, T.; Hayashi, R.; Tsujimura, S. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors. Int. J. Mol. Sci. 2017, 18, 604. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, A.; Malhotra, B. Mediated biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Metzker, G.; De Aguiar, I.; Martins, S.C.; Schultz, M.S.; Vasconcellos, L.C.; Franco, U.W. Electrochemical and chemical aspects of ruthenium(II) and (III) ammines in basic solution: The role of the ruthenium(IV) species. Inorg. Chim. Acta 2014, 416, 142–146. [Google Scholar] [CrossRef]
- O’Reilly, J.E. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim. Biophys. Acta (BBA) Bioenerg. 1973, 292, 509–515. [Google Scholar] [CrossRef]
- Kimura, Y.; Niki, K. Electrochemical oxidation of nicotinamide-adenine dinucleotide (NADH) by modified pyrolytic graphite electrode. Anal. Sci. 1985, 1, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Jahn, B.; Jonasson, N.S.W.; Hu, H.; Singer, H.; Pol, A.; Good, N.M.; Camp, H.J.M.O.D.; Martinez-Gomez, N.C.; Daumann, L.J. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays. J. Boil. Inorg. Chem. 2020, 25, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Methoxy PES. Available online: https://www.dojindo.co.jp/products/M470/ (accessed on 9 May 2020).
- Yomo, T.; Sawai, H.; Urabe, I.; Yamada, Y.; Okada, H. Synthesis and characterization of 1-substituted 5-alkylphenazine derivatives carrying functional groups. JBIC J. Boil. Inorg. Chem. 1989, 179, 293–298. [Google Scholar] [CrossRef]
- Sakai, G.; Kojima, K.; Mori, K.; Oonishi, Y.; Sode, K. Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Biotechnol. Lett. 2015, 37, 1091–1099. [Google Scholar] [CrossRef]
- Kim, S.; Nibe, E.; Tsugawa, W.; Kojima, K.; Ferri, S.; Sode, K. Construction of engineered fructosyl peptidyl oxidase for enzyme sensor applications under normal atmospheric conditions. Biotechnol. Lett. 2011, 34, 491–497. [Google Scholar] [CrossRef]
- Kamel, M.M.; Abdalla, E.M.; Ibrahim, M.; Temerk, Y. Electrochemical studies of ascorbic acid, dopamine, and uric acid at a dl-norvaline-deposited glassy carbon electrode. Can. J. Chem. 2014, 92, 329–336. [Google Scholar] [CrossRef]
- Wangfuengkanagul, N.; Chailapakul, O. Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J. Pharm. Biomed. Anal. 2002, 28, 841–847. [Google Scholar] [CrossRef]
- Pournaghi-Azar, M.; Ojani, R. Catalytic oxidation of ascorbic acid by some ferrocene derivative mediators at the glassy carbon electrode. Application to the voltammetric resolution of ascorbic acid and dopamine in the same sample. Talanta 1995, 42, 1839–1848. [Google Scholar] [CrossRef]
- Murthy, A.S.; Sharma, J. Benzoquinone modified electrode for sensing NADH and ascorbic acid. Talanta 1998, 45, 951–956. [Google Scholar] [CrossRef]
- Pournaghi-Azar, M.H.; Ojani, R. Attempt to incorporate ferrocenecarboxylic acid into polypyrrole during the electropolymerization of pyrrole in chloroform: Its application to the electrocatalytic oxidation of ascorbic acid. J. Solid State Electrochem. 1999, 3, 392–396. [Google Scholar] [CrossRef]
- Pournaghi-Azar, M.H.; Ojani, R. Electrochemistry and electrocatalytic activity of polypyrrole/ferrocyanide films on a glassy carbon electrode. J. Solid State Electrochem. 2000, 4, 75–79. [Google Scholar] [CrossRef]
- Raoof, J.B.; Ojani, R.; Beitollahi, H.; Hossienzadeh, R. Electrocatalytic Determination of Ascorbic Acid at the Surface of 2,7-Bis(ferrocenyl ethyl)fluoren-9-one Modified Carbon Paste Electrode. Electroanalysis 2006, 18, 1193–1201. [Google Scholar] [CrossRef]
- VC Sensor for Pocket Chem VC. Available online: http://www.arkray-vc.com/spec/# (accessed on 9 May 2020).
Enzyme | Amount of Enzyme (U/strip) | Linear Range (0 mM to) | Sensitivity (µA/mM) | R2 | LOD (mM) | RSD (%) |
---|---|---|---|---|---|---|
AvLOx A96L mutant | 1 | 50 mM a | 0.73 ± 0.12 | >0.99 | 0.5 | <7 |
AfGDH CC mutant | 0.1 | 50 mM b | 0.25 | >0.99 | 2.6 | <3 d |
PnFPOx N56A mutant | 0.1 | 10 mM c | 0.55 | >0.99 | 1.1 | <8 e |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitriana, M.; Loew, N.; Witarto, A.B.; Ikebukuro, K.; Sode, K.; Tsugawa, W. Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors. Sensors 2020, 20, 2825. https://doi.org/10.3390/s20102825
Fitriana M, Loew N, Witarto AB, Ikebukuro K, Sode K, Tsugawa W. Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors. Sensors. 2020; 20(10):2825. https://doi.org/10.3390/s20102825
Chicago/Turabian StyleFitriana, Maya, Noya Loew, Arief Budi Witarto, Kazunori Ikebukuro, Koji Sode, and Wakako Tsugawa. 2020. "Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors" Sensors 20, no. 10: 2825. https://doi.org/10.3390/s20102825
APA StyleFitriana, M., Loew, N., Witarto, A. B., Ikebukuro, K., Sode, K., & Tsugawa, W. (2020). Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors. Sensors, 20(10), 2825. https://doi.org/10.3390/s20102825